
COS 597C: Recent Developments in Program Obfuscation Princeton University
Homework 2 Due: 11:59pm, November 8, 2016

Homework 2

Problem 1: FHE to Collision Resistance. A collision-resistant hash function
consists of two algorithms Gen and Eval such that Gen(λ) is a randomized procedure
that outputs a hash key hk, and Eval(hk, x) is deterministic and outputs a hash y.
Here, x is a sting of length p(λ) for some polynomial p, and y is a string of length
q(λ) for some polynomial q, where we require that q(λ)� p(λ). This means there are
very many collisions in the function Eval(hk, ·). For security, we require that no such
collision can be found. For all PPT adversaries A, there exists a negligible function
ε such that

Pr[x0 6= x1,Eval(hk, x0) = Eval(hk, x1) : hk← Gen(λ), (x0, x1)← A(hk)] < negl(λ)

In this problem, we will show how to use FHE to build collision resistant hash func-
tions. Actually, we will show that a weaker object called additively homomorphic
encryption (which allows additions, but not multiplications) implies collision resis-
tance. We will assume a public key homomorphic scheme, though it is straightfor-
ward to adapt to a secret key scheme. Given a public key homomorphic scheme
(Gen,Enc,Dec), we construct the hash function (Gen′,Eval) as follows:

• Gen′(λ): First fun (ek, dk,⊕) ← Gen(λ). Then, for i = 1, . . . , p(λ), do the
following. Sample a random bi ∈ {0, 1}, and compute ci = Enc(ek, bi). Output
the hash key hk = (⊕, {ci}i∈[p(λ)]).

• Eval(hk, x ∈ {0, 1}p(λ)): Let cx = ⊕i:xi=1ci. That is, homomorphically add the
ci for i with xi = 1. Homomorphic addition is not necessarily associative, so
pick some fixed order (independent of x) of parenthesis for the computation.
Output cx.

Prove that this scheme is a secure collision resistant hash function.

1

Problem 2: Merkle Hash Trees. Let Gen,Eval be a collision resistant hash
function with p(λ) = 2λ and q(λ) = λ. That is, the hash function shrinks the
input by a factor of 2. Merkle Hash Trees are a way to get collision resistant
hash functions for much larger inputs. Let Eval0 = Eval. Then for i > 0, let
Evali(hk, (x ∈ {0, 1}λ)2

i
) do the following. Write x = (x0, x1) where xb ∈ ({0, 1}λ)2i−1

and output Eval(hk, (Evali−1(hk, x0),Evali−1(hk, x1))). Intuitively, Evali corresponds
to a tree of depth i, where the leaves consist of the 2i blocks of the input, and the
value of each internal node is obtained by hashing the values of the two children. The
output is the root node.

Part (a): Prove that Gen,Evali is a secure collision resistant hash function
for any integer i.

Part (b): Given h obtained by from Evali(hk, x) for some x, and some chosen block
xj ∈ {0, 1}λ, we wish to give a short “proof” that the jth block of x is xj. That
is, we want a procedure Open(hk, x, j) that outputs a “proof” π, and a procedure
Ver(hk, h, j, xj, π) that verifies the proof. We make the following requirements:

• Correctness. For any x ∈ ({0, 1}λ)2i , any j ∈ [2i], if π = Open(hk, x, j),
h = Evali(hk, x), then Ver(hk, h, j, xj, π) accepts.

• Security. Intuitively, it should be difficult for an adversary to compute h =
Evali(hk, x), and then later pick a block x′j 6= xj, and “prove” that the jth block
of x is x′j. We formalize this as follows. For any PPT adversary A, there exists
a negligible function ε such that

Pr[x′j 6= xj,Ver(hk, h, j, x
′
j, π) = 1 : hk← Gen(λ),A(hk) = (x, j, x′j, π), h = Evali(hk, x)] < negl(λ)

• Compactness. Up until this point, one could set π = x as a valid proof.
However, for applications such as multiparty NIKE, we would like π to be
small. So the compactness requirement is that |π| = poly(i, λ). For i � λ, i
will grow with log |x|, and so |π| is polylogarithmic in |x|, and is in particular
much smaller than x.

Devise algorithms Open,Ver for Merkle hash trees such that |π| = O(iλ).

2

Problem 3: NIKE for unbounded users. Use Open,Ver from above to con-
struct multiparty NIKE where the number of users is unbounded. Use
the abstract approach discussed in class, and use diO to prove security. Your NIKE
may be in a trusted setup model. The trusted setup and public procedures must not
depend on the number of users exchanging keys. This means that once the trusted
setup is run, any polynomial number of users can establish a shared group key.

Hint: it suffices to construct NIKE for a bounded number of users, but where the
bound is superpolynomial.

Problem 4: Multilinear Maps.

• (a) On a symmetric bilinear map, show that the decisional Diffie Hellman prob-
lem is easy. That is, show that the following two distributions are distinguish-
able: ([a]1, [b]1, [ab]1) and ([a]1, [b]1, [c]1) where a, b, c are random in Zp.

• (b) Explain why the decisional Diffie Hellman problem is plausibly still hard on
an asymmetric bilinear map.

• (c) Given a matrix A ∈ Zn×np , let [A]i denote the n × n matrix of encodings
obtained by encoding A component-wise at level i. That is, ([A]i)j,k = [Aj,k]i.
Explain how, given matrix encodings [A]1 and [B]1 on a symmetric multilinear
map, it is possible to compute:

– [A+B]1

– [A ·B]2.

(It is straightforward to extend this to asymmetric multilinear maps, though
you do not have to show it.)

• (d) Show that, given a symmetric n-linear map, it is possible to distinguish the
encoding [A]1 of a full-rank n × n matrix from the encoding [B]1 of a singular
matrix (that is, B has rank less than n).

• (e) Explain why the same is not true on an asymmetric multilinear map.

• (f) For any integer n, devise two distributions on level-1 encodings for a symmet-
ric multilinear map such that (1) the encodings are plausibly indistinguishable
on a n-linear map, but (2) the encodings are distinguishable on an (n + 1)-
linear map. Justify why the distributions are indistinguishable on an n-linear
map (though no formal proof is necessary).

3

