
COS 597C: Recent Developments in Program Obfuscation Princeton University
Homework 1 Due: 11:59pm, October 6, 2016

Homework 1

Problem 1: FHE from VBB. In this problem, you will show that VBB obfusca-
tion (for circuits) implies fully homomorphic encryption. Unfortunately, the straight-
forward approach — obfuscating the circuit that decrypts, performs operations on the
plaintexts, and then re-encrypts — will not quite work. To see this, consider an at-
tempted proof of security. The proof starts with an adversary A for the FHE scheme,
and will construct an adversary B for the VBB obfuscation of the homomorphism
program. Such an adversary B is trying to learn a single bit of information about the
homomorphism program, and can be simulated by a simulator with black box access.
Then the proof would show that such a simulator is impossible. Unfortunately, there
is no place in the VBB definition to give B a ciphertext, meaning that whatever bit
of information B is trying to learn has nothing to do with the plaintext A is trying
to learn.

The above problem can be fixed by defining an even stronger notion of VBB security
that allows B to receive some auxiliary information correlated with the program
(this auxiliary information would be the ciphertext). However, we need to use our
definition of VBB obfuscation in order to use FHE in the VBB impossibility result.

Instead, we will tweak the scheme. We will start the encryption scheme based on
a PRF PRF1 : {0, 1}λ × {0, 1}λ → {0, 1}. The secret key is a key k for PRF1 .
A ciphertext for a single-bit message m has the form (r,PRF1(k, r) + m), where
addition is carried out modulo 2. To allow homomorphic operations, we obfuscate
a program which, as above, decrypts, performs the operation on the plaintexts, and
the re-encrypts. However, we make two changes to the scheme:

• First, instead of encrypting by choosing a random r and outputing r,PRF1(k, r)+
m, we do the following. The secret key contains 2n “base” ciphertexts (encrypt-
ing n 0’s and n 1’s), and to encrypt, homomorphically add (using the obfuscated
program) a random subset of them in such a way that the output is guaranteed
to encrypt the desired value.

• We modify the obfuscated program to also output the “base” ciphertexts.

The reason for these changes will become more clear when working through the proof.
More precisely, let PRF1 : {0, 1}λ×{0, 1}λ → {0, 1} and PRF2 : {0, 1}λ×{0, 1}2λ+3 →
{0, 1}λ be PRFs. The scheme encrypts just single bits, and is described as follows:

1



• Gen(λ) generates a random keys k, k′ ∈ {0, 1}λ. Then, for i = 1, . . . , n (for an
n to be chosen later) and b ∈ {0, 1}, it chooses a random ri,b ∈ {0, 1}λ, and
set ci,b = (ri,b,PRF1(k, ri,b) + b) ∈ {0, 1}λ+1. Here, + means addition modulo 2.
The ci,b will be the “base” ciphertexts (with ci,b encrypting the bit b) that will
be homomorphically added to encrypt.

Next, Gen constructs the circuit Ck,k′,{ci,b}(op, d0, d1), where op ∈ {⊥,+,×} and
db ∈ {0, 1}λ+1 for b ∈ {0, 1}.
If op = ⊥, then Ck,k′,{ci,b}(op, d0, d1) just outputs {ci,b}. If op ∈ {+×}, then
Ck,k′,{ci,b}(op, d0, d1) does the following. It parses each db as (eb, fb) for eb ∈
{0, 1}λ and fb ∈ {0, 1}. Then it computes mb = fb + PRF1(k, eb), and com-
putes m = m0 op m1 (here, the operation is carried out modulo 2). Let
e = PRF2(k

′, (op, d1, d1)) (here, op is treated as a bit). Let f = PRF1(k, e) +m.
Finally, output d = (e, f).

Gen obfuscates Ck,k′,{ci,b}, obtaining Ĉ. Next, it lets ⊕ = Ĉ(⊕, ·, ·), ⊗ =

Ĉ(⊗, ·, ·). It outputs (k, {ci,b},⊕) as the secret key, and ⊕,⊗ as the homo-
morphic operations.

• Enc( (k, {ci,b},⊕) ,m): Choose a random string x ∈ {0, 1}n, subject to the
constraint that the parity of x is m (that is,

∑n
i=1 xi mod 2 = m). Then, use

the homomorphic operations to add the ciphertexts ci,xi for i ∈ [n]. That is,
first run c2 = c1,x1 ⊕ c2,x2 , then c3 = c2 ⊕ c3,x3 , then c4 = c3 ⊕ c4,x4 , . . . , until
finally computing cn = cn−1 ⊕ cn,xn . Output cn as the ciphertext. Notice that
the ciphertext encrypts

∑n
i=1 xi mod 2 = m, as desired.

• Dec( (k, {ci,b},⊕) , (e, f)): Output PRF1(k, e) + f

Prove that this encryption scheme is secure (according to the definition
given in the lecture notes for lecture 2), assuming that VBB obfuscation
is used. What do you need to set n to?

Hint 1: First prove that the view of the adversary in the standard FHE experiment is
indistinguishable from the view where ci,b are all set to encryptions of 0 (rather than
ci,1 being encryptions of 1)

Hint 2: Once you’ve followed Hint 1, you may find the following lemma useful:

Lemma 1. Let D be some distribution over some set V . Let Yi,b for i ∈ [n], b ∈ {0, 1}
be independent variables sampled according to D. Given a vector x ∈ {0, 1}n, let
Zx = (Y1,x1 , . . . , Yn,xn). Let h : V n → {0, 1}` and g : V 2n × {0, 1}` → {0, 1} be
potentially probabilistic functions. Then

Pr
Yi,b←D, x←{0,1}n

[ g({Yi,b}i∈[n],b∈{0,1}, h(Zx)) =
∑
i

xi mod 2 ] ≤ 1

2
+ 2−0.2n+`+1
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Problem 2: Universal Samplers from iO. A universal sampler, intuitively, is a
program U , that on input a sampling procedure D, outputs a sample s from D. The
program, however, is deterministic, so that repeated calls for the same D give the
same sample. Therefore, if you and I both know U and run it on the same D, we will
get the same sample s.

Ideally, for security, we would have that the sampler is “as good as” having a black
box in the sky that takes as input a sampling procedure D, and returns a truly
random sample generated by D. Moreover, this black box has ensures that repeated
calls on the same D have consistent outputs, so you and I get the same sample.

It is possible to formalize a VBB-style security notion for universal samplers, but it will
be unattainable just like VBB obfuscation. Instead, we will settle for the following
weaker definition. A universal sampler is a triple of algorithms (Gen, Samp, Sim)
where:

• Gen(λ,m, n) takes as input the security parameter λ, a “description size” m,
and an output length n. It is a PPT procedure that outputs parameters Params.

• Samp(Params, D) is a deterministic procedure that takes as input Params, as
well as a sampling procedure D given as a circuit whose size is at most m and
whose samples have size at most n. It outputs a sample s.

• Sim(λ,m, n,D∗, s∗) is a PPT procedure that takes as input λ,m, n as before,
a sampling procedure D∗ of size at most m and output size at most n, and a
sample s∗ of size at most n. It outputs “simulated” parameters Params.

For correctness, we require that, if Params← Sim(λ,m, n,D∗, s∗), then Samp(Params, D∗)
outputs s∗. In other words, the simulated parameters have the sample for D∗ pro-
grammed to s∗.

For security, we require that, for any m,n and sampler D∗ of size at most m and
output size at most n, the following holds:

Params← Gen(λ,m, n) ≈c Params← Sim(λ,m, n,D∗, s∗) where s∗ ← D∗()

where ≈c means that the distributions on the left and right are indistinguishable, and
s∗ ← D∗() means that s∗ is a random sample from D∗. Intuitively, this means that
for any D∗, the s∗ generated as Samp(Params, D∗) is “as good as” a random sample
from D∗, since it can be simulated using a truly random sample.

Construct Universal Samplers from Indistinguishability Obfuscation. Prove
the security of your construction.

Hint: Params will be an obfuscated circuit that takes as input a sampling procedure D,
and runs D on coins r for some r to obtain the output s. How should r be generated?
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Problem 3. Multiparty NIKE for an unbounded number of users using
iO for Turing machines? Consider the construction of non-interactive multiparty
key exchange seen in class. The program being obfuscated takes as input N public
values x1, . . . , xn, as well as an index i ∈ [N ] and seed s. The program checks that
PRG(s) = xi, and if so, it outputs PRF(k, (x1, . . . , xn) ).

Because we obfuscate a circuit, which has bounded input size, once the obfuscated
program is produced for N users, the maximum number of users that can exchange
keys is bounded by N .

Now, what if instead we used a Turing machine obfuscator? We can define a Turing
machine that is independent of N and carries out the above computation for any
number of users. If we had a Turing machine obfuscator, then we could obfuscate
this Turing machine. Then, the protocol could be run with any number of users.

Unfortunately, the above approach cannot be proven secure. Explain Why

Hint: Go through the proof seen in class. How big must the obfuscated program be to
make the proof go through?

Problem 4. Construct Multiparty Non-interactive Key Exchange (NIKE)
using Universal Samplers and Public Key Encryption (PKE). Prove that
your construction is secure.

Hint: Each user’s secret value will be the secret decryption key for a PKE, the public
value will be the corresponding public encryption key. The trusted setup will involve
generating the parameters for a universal sampler.

This gives an alternative approach to building multiparty NIKE than the construction
seen in class.
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