CS 161: Design and Analysis of
Algorithms
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Computational Geometry (CS 268)

e Convex hull

— Say you have a bunch of complicated 3D objects,
and you want to determine if they collide

— Take convex hull of each object

— Only look at pairs of objects where convex hulls
collide



Computational Geometry (CS 268)

* Simple algorithm for convex hull:
— Find left-most point, x. Must be in convex hull

— Scan all points to find the one that is next going
clockwise around hull

— Repeat until back at the starting point.
— If hull has h points, O(n h)



Computational Geometry (CS 268)

* Voronoi Diagram
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* Delaunay Triangulation




Computational Geometry (CS 268)

* Turns out that Voronoi diagrams and
Delaunay triangulations are “duals” of each
other
— Each face becomes an node
— Each boundary between faces becomes an edge
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Computational Geometry (CS 268)

* To compute Delaunay triangulation:
— Start with some triangulation
— Repeatedly swap edges until Delaunay



Computational Geometry (CS 268)

* Faster Algorithm:
— Divide points in half
— Recursively compute Delaunay of each half
— Glue results back together
— O(n log n)



Computational Geometry (CS 268)

* Linear Programming
— Feasible region is a geometric object
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Algorithmic Game Theory (CS 364)

e Zero-Sum Games

— Rock-Paper-Scissors: each person picks either rock
paper or scissors, and announce their choice at
the same time

— Rock beats scissors, scissors beats paper, paper
beats rock

— Whoever wins gets S1 form the other person



e Zero-Sum Games

Algorithmic Game Theory (CS 364)

Person A
Rock Paper Scissors
Rock 0 -1 1
Person B Paper 1 0 -2
Scissors -1 1 0




Algorithmic Game Theory (CS 364)

* Zero-Sum Games
— What is the optimal strategy?

— If person A always picks Rock, then person B will
catch on an pick paper

— A’s best strategy is to mix it up



Algorithmic Game Theory (CS 364)

e Zero-Sum Games

— Want a mixed strategy: pick each item randomly
with some probabilities

— Turns out, optimal mixed strategy for A can be
solved by a linear program

— The dual: the LP for the optimal mixed strategy for B

— For zero-sum games, the optimal strategy for A is
the one that yields the same expected profit, no
matter what B does.



Algorithmic Game Theory (CS 364)

e Braess’s Paradox
— Have 100 drivers

O

x/100
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Half the drivers will
go each way
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Time for each
driver: 1.5



Algorithmic Game Theory (CS 364)

e Braess’s Paradox
— Add a new edge

All drivers will take
routeS—-A-B-F

x/100 @ 1
o (F)
@ 1 x/100

Time for each
driver: 2



Algorithmic Game Theory (CS 364)

* |f everyone makes selfish choices, outcome
may be suboptimal for everyone

* Goal of mechanism design: force selfish
choices to result in optimal outcome for

everyone
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Complexity (CS 254)

 We already covered P, NP

 Other complexity classes?
— L = Log space
— PSPACE = polynomial memory
— EXPTIME = exponential time
— BPP = poly time randomized algorithms
— Non-deterministic versions of each,



Complexity (CS 254)

* Very little is known about separations
— Know that P # EXPTIME
— Know that L# P
— Don’t know if P = BPP
— Don’t know how to compare BPP and NP
— Don’t know even if BPP = NEXPTIME
— Don’t know if L=P
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Quantum Computing (CS 259Q)

e State of classical computer: bunch of bits

e Each step of algorithm: change values of bits
according to some rules



Quantum Computing (CS 259Q)

 Quantum computer: bunch of qubits

— Whereas a bit is either 0 or 1, a qubit is some
superposition

«|0) 4+ B|1) o + %=1

— Measure: get 0 with probability a?, 1 with
probability B2. Left in state corresponding to
result of measurement



Quantum Computing (CS 259Q)

* Example: two qubits:

(a1]0) + B1|1))(a2]|0) + B2|1))
a1 2]0)]0) 4+ a1 B2]0)[1) + Braa|1)]0) + B1B2|1)|1)

041042‘0(» -+ 04162‘01> —+ 51042‘10> -+ 6152‘11>



Quantum Computing (CS 259Q)

* In the state

a10a2]00) + a1 52(01) + B1a2|10) + B152|11)

* |f we measure the first bit, we get 0 with prob

\041042\2 + \04152\2 = |041|2



Quantum Computing (CS 259Q)

e After measurement, left with terms where
first bitis O

041042|OO> -+ ()4152|01>

* Must renormalize by dividing by

V0 aras]? + a1 B2|? = a4

 Arrive in state

0)(a2]0) 4 B2|1))



Quantum Computing

* For these states, measuring the first qubit
does not affect the second

* These states are unentangled

* |[n general, a quantum algorithm is in an
entangled state

Oé()()|00> —+ Oé()1|01> -+ 0410|10> - ()411|11>

ano]® + |ao1|” + |aio]® + |an|* =1



Quantum Computing (CS 259Q)

* n qubits:

2" 1 2" 1
Sl Y e =1
x=0 =0

e Each step of of quantum algorithm: apply

transformations to the state

* At the end of the algorithm: measure, obtain x
with probability |a, |2



Quantum Computing (CS 259Q)

Classical computer on n bits: described by a n-
bit string

Quantum computer on n qubits: described by
2" complex values

Quantum operations act on exponentially
larger state

However, this state is invisible to us, must be
measured first



Quantum Computing (CS 259Q)

e Quantum Fourier Transform:
— Applies DFT to coefficients

2" —1 OFT 2" —1
Z a|T) — Z Ayly)
x=0 y=0
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Quantum Computing (CS 259Q)

* Two main quantum algorithms:

— Shor’s Algorithm: uses QFT to factor integers in
poly time

— Grover’s Algorithm: search a database of N items
in time O(N%/2)



