CS 161: Design and Analysis of Algorithms

Beyond CS 161

- Computational Geometry
- Algorithmic Game Theory
- Complexity
- Quantum Computing

Convex hull

Convex hull

Convex hull

- Say you have a bunch of complicated 3D objects,
 and you want to determine if they collide
- Take convex hull of each object
- Only look at pairs of objects where convex hulls collide

- Simple algorithm for convex hull:
 - Find left-most point, x. Must be in convex hull
 - Scan all points to find the one that is next going clockwise around hull
 - Repeat until back at the starting point.
 - If hull has h points, O(n h)

Voronoi Diagram

Delaunay Triangulation

- Turns out that Voronoi diagrams and Delaunay triangulations are "duals" of each other
 - Each face becomes an node
 - Each boundary between faces becomes an edge

- To compute Delaunay triangulation:
 - Start with some triangulation
 - Repeatedly swap edges until Delaunay

- Faster Algorithm:
 - Divide points in half
 - Recursively compute Delaunay of each half
 - Glue results back together
 - -O(n log n)

- Linear Programming
 - Feasible region is a geometric object

Zero-Sum Games

- Rock-Paper-Scissors: each person picks either rock paper or scissors, and announce their choice at the same time
- Rock beats scissors, scissors beats paper, paper beats rock
- Whoever wins gets \$1 form the other person

Zero-Sum Games

		Person A		
		Rock	Paper	Scissors
Person B	Rock	0	-1	1
	Paper	1	0	-2
	Scissors	-1	1	0

- Zero-Sum Games
 - What is the optimal strategy?
 - If person A always picks Rock, then person B will catch on an pick paper
 - A's best strategy is to mix it up

Zero-Sum Games

- Want a mixed strategy: pick each item randomly with some probabilities
- Turns out, optimal mixed strategy for A can be solved by a linear program
- The dual: the LP for the optimal mixed strategy for B
- For zero-sum games, the optimal strategy for A is the one that yields the same expected profit, no matter what B does.

- Braess's Paradox
 - Have 100 drivers

Half the drivers will go each way

x/100

A

1

S

1

X/100

B

Time for each driver: 1.5

- Braess's Paradox
 - Add a new edge

All drivers will take route S - A - B - F x/100A 1 x/100 x/100 x/100 x/100Time for each

driver: 2

- If everyone makes selfish choices, outcome may be suboptimal for everyone
- Goal of mechanism design: force selfish choices to result in optimal outcome for everyone

Complexity (CS 254)

Complexity (CS 254)

- We already covered P, NP
- Other complexity classes?
 - -L = Log space
 - PSPACE = polynomial memory
 - EXPTIME = exponential time
 - BPP = poly time randomized algorithms
 - Non-deterministic versions of each,

Complexity (CS 254)

- Very little is known about separations
 - Know that P ≠ EXPTIME
 - Know that L ≠ P
 - Don't know if P = BPP
 - Don't know how to compare BPP and NP
 - Don't know even if BPP = NEXPTIME
 - Don't know if L = P

- State of classical computer: bunch of bits
- Each step of algorithm: change values of bits according to some rules

- Quantum computer: bunch of qubits
 - Whereas a bit is either 0 or 1, a qubit is some superposition

$$\alpha|0\rangle + \beta|1\rangle \qquad \alpha^2 + \beta^2 = 1$$

– Measure: get 0 with probability α^2 , 1 with probability β^2 . Left in state corresponding to result of measurement

Example: two qubits:

$$(\alpha_1|0\rangle + \beta_1|1\rangle)(\alpha_2|0\rangle + \beta_2|1\rangle)$$

$$\alpha_1 \alpha_2 |0\rangle |0\rangle + \alpha_1 \beta_2 |0\rangle |1\rangle + \beta_1 \alpha_2 |1\rangle |0\rangle + \beta_1 \beta_2 |1\rangle |1\rangle$$

$$\alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\alpha_2|10\rangle + \beta_1\beta_2|11\rangle$$

In the state

$$\alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle + \beta_1\alpha_2|10\rangle + \beta_1\beta_2|11\rangle$$

If we measure the first bit, we get 0 with prob

$$|\alpha_1 \alpha_2|^2 + |\alpha_1 \beta_2|^2 = |\alpha_1|^2$$

 After measurement, left with terms where first bit is 0

$$\alpha_1\alpha_2|00\rangle + \alpha_1\beta_2|01\rangle$$

Must renormalize by dividing by

$$\sqrt{|\alpha_1 \alpha_2|^2 + |\alpha_1 \beta_2|^2} = \alpha_1$$

Arrive in state

$$|0\rangle(\alpha_2|0\rangle+\beta_2|1\rangle)$$

Quantum Computing

- For these states, measuring the first qubit does not affect the second
- These states are unentangled
- In general, a quantum algorithm is in an entangled state

$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

$$|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$$

• n qubits:

$$\sum_{x=0}^{2^{n}-1} \alpha_{x} |x\rangle \qquad \sum_{x=0}^{2^{n}-1} |\alpha_{x}|^{2} = 1$$

- Each step of of quantum algorithm: apply transformations to the state
- At the end of the algorithm: measure, obtain x with probability $|\alpha_x|^2$

- Classical computer on n bits: described by a nbit string
- Quantum computer on n qubits: described by 2ⁿ complex values
- Quantum operations act on exponentially larger state
- However, this state is invisible to us, must be measured first

- Quantum Fourier Transform:
 - Applies DFT to coefficients

$$\sum_{x=0}^{2^{n}-1} \alpha_{x} |x\rangle \stackrel{QFT}{\longrightarrow} \sum_{y=0}^{2^{n}-1} A_{y} |y\rangle$$

$$A_y = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} \alpha_x e^{\frac{-i2\pi xy}{2^n}}$$

- Two main quantum algorithms:
 - Shor's Algorithm: uses QFT to factor integers in poly time
 - Grover's Algorithm: search a database of N items in time $O(N^{1/2})$