CS 161: Design and Analysis of
Algorithms

NP-Complete |

P, NP

Polynomial time reductions
NP-Hard, NP-Complete
Sat/ 3-Sat

Decision Problem

e Suppose there is a function A that outputs
True or False

e A decision problem is a problem of the form
“is A(x) = True?”

 Example: A(G,s,t,len) = True if and only if G
has a path from s to t of length at most len

P

* Pisthe class of all decision problems that are
solvable in polynomial time (O(n¢) for some c)
in the size of the input

 Example: To compute A(G,s,t,len), compute
the shortest path from s to tin G, and check if
its length is at most len

P

 Example: A(LP,c) = True if and only if LP has a
solution attaining a value of at least c

 The problem of determining if A(LP,c) = True is
in P since we can always solve the linear
program, and check that the value is at least ¢

Is Polynomial Time the Same as
Efficient?
* If some problem was solvable in time O(n%%), it
would be extremely hard to solve, but still in P

 However, for large n, O(n°®) is still much better
that O(d")

* Good property: polynomials are closed under
composition

Binary Relation

* A binary relation is a function R(x,y) that
outputs True or False

Search Problem

* A binary relation R specifies a search problem

— Given an input x, determine if there is a y such that
R(x,y) = True

— If there is, output such ay

NP

NP = set of decision problems A such that
there exists a search problem R, where:

— A(x) = True if and only if there is some y such that
RA(X,y) = True

— R,(x,y) is computable in polynomial time

* yis called a witness that f(x) is True

NP

 Example: A((G,c)) = True if and only if G has a
tour T with total length at most c

—RA((G,c), T) =True ifand only if T is a tour of G
with total length at most ¢

— While we don’t know how to actually compute

such a T, we can easily check that T is a tour of
length at most c

NP

* Example: Any problem in P isin NP
— Ra(%,-) = A(x)

Decision vs Search

* NP is technically defined as a class of decision
problems: “Does G have a minimum spanning
tree with weight at most W?”

e Often, we abuse notation and say that the
search problem is in NP: “Find a spanning tree
of G with weight at most W”

* For many problems, possible to show that
decision and search are essentially the same

Pvs NP

* Pisthe set of problems solvable in polynomial
time

* NP is the set of problems whose solutions can
be checked in polynomial time

e Does P =NP?

— Seems unlikely that every problem that can be
checked in polynomial time can also be computed
in polynomial time

Polynomial Time Reductions

* Recall that a reduction from problem A to
problem B consists of two components:

— A conversion from an instance of problem A into
an instance of problem B

— A conversion from a solution for the instance of
problem B into a solution for the original instance

Polynomial Time Reductions

* We will be more precise now:
* A decision problem A is polynomial-time
reducible to B if:

— We can efficiently convert any instance x of A into
an instance x” of B

— A(x) = True if and only if B(x") = True
* Wewrite A<, B

Polynomial Time Reductions

* Theorem:if A<, BandBisinP,then AisinP

* Proof: Given an instance x of A, use the reduction
to get an instance x” of B. Then solve B using a
polynomial time algorithm

NP-Complete

What if there was some problem B in NP such
that A <, B for all Aiin NP?

fBisin P, thenall Aarein P, so P =NP
f Bisnotin P, then clearly P # NP

f such a B exists, we have reduced the

problem of deciding if P = NP to deciding if B is
iIn NP

NP-Complete

* A decision problem B is NP-Complete if B is in
NP and A <, B forall Ain NP

— Informally: B is as hard as the hardest problems in
NP

* A problem Cis NP-Hard if A <, B for all Ain NP

— In formally: Cis at least as hard as the hardest
problems in NP

Do NP-Complete Problems Exist?

e At first glance, the existence of NP-Complete
problems seems unlikely

* How can one problem be reducible from a the
entire class of infinitely many problems?

Boolean Circuit

Output

Boolean Circuit

false true

true false

Boolean Circuit

false false

false false false true

false true

true false true true

Boolean Circuit

false true

false false false true

true true

true false true true

Boolean Circuit

true false

Boolean Circuit

Output

Circuit SAT

* Given a boolean circuit C, is there a setting of
the unknown inputs that makes the circuit
evaluate to “true”?

* Clearly, Circuit SAT is in NP: we can check
whether a setting of the unknown inputs leads
to a “true” by evaluating the circuit

Circuit SAT is NP-Complete

* Theorem: Given any NP problem A, we have
that A <, Circuit SAT

Proof

* Our NP problem A has an efficiently
computable binary relation R such that A(x) =
True if and only if there is a y such that R(x,y)
= True

Proof

* Ris computable in polynomial time

* R can be represented as a boolean circuit!

— The computer that runs R is a boolean circuit Circ
on a chip

— Since R runs in polynomial time, R can be
rendered as a boolean circuit consisting of a
polynomial number copies of Circ, one per unit of
time

— Values of gates in one copy used to compute
values in next

Proof

We have a boolean circuit C that computes R

A(x) = True if and only if there is a y such that
C(x,y) evaluates to true

Let the circuit C, be the circuit C, with the
values for x hardwired

Then C, has a satisfying assignment if and only
if there is a y that makes R(x,y) = True

Proof

 Therefore, for any NP problem A, we have the
following reduction to Circuit SAT:

— Construct the polynomial-sized circuit C that
checks if R(x,y) = True

— For instance x, hardwire the x, obtaining the
circuit C,

— C, is our instance of the Circuit SAT problem

Satisfiability

* A boolean formula is any of the following:
— A variable: x
— The negation of a boolean formula: &
— The disjunction (or) of boolean formulae:
r1V To V T3
— The conjunction (and) of boolean formulae:

(£L‘1 \/.CE_Q) /\LIZ’Q N\ (il?l /\5133)

SAT Problem

 The SAT problem is to, given a boolean
formula, find a satisfying assignment, or
report that none exists.

* Clearly, SAT is a special case of Circuit SAT

Disjunctive Normal Form

* Avariable or its negation are called literals

* Any boolean formula can be massaged into the
following form disjunctive normal form (DNF):
the disjunction of conjunctions of literals

(il?l/\$2 /\ilﬁ_g)\/ili_l\/(ili‘g /\ZE_4/\£IZ‘5)

» Satisfiability of DFS formulas is easy!

Conjunctive Normal Form

e Conjunctive normal form (CNF): conjunction
of disjunction of literals

(Q?l\/xg \/Q7_3V$4)/\Q7_1/\(ZIZ‘2 \/.’,E_4\/CIZ‘5)

* Define a clause to be one of the disjunctions

3 SAT

3SAT is the satisfiability problem on CNF
formula where all clauses have at most 3
literals

(x1 VT3V ag) NT1 A (22 VTaV x5)

3SAT is NP-Complete

Proof

e We will reduce from Circuit SAT

* Given an instance C of circuit say, create a
variable g for each gate, representing the
output of that gate

* For each gate, we will create one or more
clauses that force the variables to be set
correctly

Proof

))

Clauses: (g) (9)

Gate g:

Clauses:

Proof
g

Gate g:
Cho o o
(g V hy)

(g V ho)
(g V hiV hy)

Clauses:

Proof
g

Gate g:
Cho o (o

(g V h1)
(9 V ho)
(GV hy \V ho)

Clauses:

Proof

* Given a Circuit SAT instance, construct a
variable g for each gate

* Create up to three disjuntive clause for each
gate that force the outputs of each gate to be
correct

e Additionally, if g is the output gate, we add
the clause (g), forcing the output of g to be
True

Proof

* An assignment satisfies the 3SAT instance if
and only if, when we assign the output of each
gate the corresponding value:

— All gates output the correct value
— The output of the whole circuit is True

* Thus, the Circuit SAT instance has a satisfying

assignment if and only if the 3SAT instance
does

Proof

 We have exhibited a poly-time reduction form
Circuit SAT to 3SAT

* Since Circuit SAT is NP-Complete, and 3SAT is
in NP, 3SAT must also be NP-Complete

The Power of NP-Completeness

* We have shown that 3SAT is as hard as any
problem in NP

— |f 3SAT has an efficient algorithm, P = NP
— If not, P # NP

 The general belief is that P # NP
— If so, any NP-Complete problem is hard to solve

— If you can prove your problem is NP-Complete,
you probably shouldn’t bother trying to find an
efficient algorithm for it

A Less Obvious Reduction

* Recall: an independent set of a graph G =
(V,E) is a subset of nodes S such that no edge
nas both endpoints in S

* Independent Set Problem: Given G and a goal
, find an independent set of size k if one
exists

A Less Obvious Reduction

* Given an instance of 3SAT (a collection of k
clauses (z; V z; V zg)
* Construct a graph as follows:

— For each clause, create a triangle, where nodes
are labeled by the literals in the clause

— Connect each node to each of the nodes labeled
with its negation

A Less Obvious Reduction

@VyVZ)A(zVyVz)A(xVyV z)

o

A Less Obvious Reduction

e Suppose the 3SAT instance has a satisfying
assignment

* From each triangle, select a true literal
e Result must be independent set of size k

A Less Obvious Reduction

@VyVZ)A(zVyVz)A(xVyV z)

A Less Obvious Reduction

e Suppose the graph has an independent set of
size at least k

* Then at least one node from each triangle is in
the set

— There can be only one node in each triangle, so
the size is at most k

e Set the corresponding literal to true

A Less Obvious Reduction

* Need to show that setting each literal in the
independent set to true gives a satisfying
assignment, and we never try to set a variable

to be both true and false

A Less Obvious Reduction

* Since every literal has an edge to each of its
negations, if a literal is in the independent set,
none of its negations are

— We will never try to set a variable to be both true
and false

* Since every clause has a literal set to true,

every clause is true, and so the 3SAT instance
is satisfied

What do P and NP Stand For?

e P stands for polynomial time
* NP? Non-deterministic polynomial time

Non-determinism

* |Informally, a non-deterministic algorithm is
one that makes many arbitrary decisions

* A non-deterministic algorithm solves the
decision problem A if

— Provided that A(x) = True, there is some sequence
of choices that makes the algorithm output True

— If A(x) = False, no sequence of choices makes the
algorithm output True.

Equivalence to Our Definition?

* |f a poly-time non-deterministic algorithm
solves A, let R(x,y) be the following relation:

— Run A on input x, and whenever there is an

arbitrary decision to make, look at the next chunk
of y to make the decision

— If there is a sequence of decisions that makes our

algorithm output True, then there is a y making
R(x,y) output True

— |If no such sequence of decisions exist, no such y
exists

Equivalence to Our Definition

* |f a problem A has a poly-time computable
binary relation R(x,y), construct the following
non-deterministic algorithm:

— Run the algorithm for R on input x and an
arbitrary choice for the input y

Reminders

* Final August 17th 2:15 — 3:15 in Skilling
Auditorium
 Material: through Lecture 20 (Monday)

e SCPD students: welcome to take exam on
campus, just let us know by the end of

Monday

