CS 161: Design and Analysis of
Algorithms
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Decision Problem

e Suppose there is a function A that outputs
True or False

e A decision problem is a problem of the form
“is A(x) = True?”

 Example: A(G,s,t,len) = True if and only if G
has a path from s to t of length at most len



P

* Pisthe class of all decision problems that are
solvable in polynomial time ( O(n¢) for some c)
in the size of the input

 Example: To compute A(G,s,t,len), compute
the shortest path from s to tin G, and check if
its length is at most len



P

 Example: A(LP,c) = True if and only if LP has a
solution attaining a value of at least c

 The problem of determining if A(LP,c) = True is
in P since we can always solve the linear
program, and check that the value is at least ¢



Is Polynomial Time the Same as
Efficient?
* If some problem was solvable in time O(n%%), it
would be extremely hard to solve, but still in P

 However, for large n, O(n°®) is still much better
that O(d")

* Good property: polynomials are closed under
composition



Binary Relation

* A binary relation is a function R(x,y) that
outputs True or False



Search Problem

* A binary relation R specifies a search problem

— Given an input x, determine if there is a y such that
R(x,y) = True

— If there is, output such ay



NP

NP = set of decision problems A such that
there exists a search problem R, where:

— A(x) = True if and only if there is some y such that
RA(X,y) = True

— R,(x,y) is computable in polynomial time

* yis called a witness that f(x) is True



NP

 Example: A( (G,c) ) = True if and only if G has a
tour T with total length at most c

—RA((G,c), T) =True ifand only if T is a tour of G
with total length at most ¢

— While we don’t know how to actually compute

such a T, we can easily check that T is a tour of
length at most c



NP

* Example: Any problem in P isin NP
— Ra(%,-) = A(x)



Decision vs Search

* NP is technically defined as a class of decision
problems: “Does G have a minimum spanning
tree with weight at most W?”

e Often, we abuse notation and say that the
search problem is in NP: “Find a spanning tree
of G with weight at most W”

* For many problems, possible to show that
decision and search are essentially the same



Pvs NP

* Pisthe set of problems solvable in polynomial
time

* NP is the set of problems whose solutions can
be checked in polynomial time

e Does P =NP?

— Seems unlikely that every problem that can be
checked in polynomial time can also be computed
in polynomial time




Polynomial Time Reductions

* Recall that a reduction from problem A to
problem B consists of two components:

— A conversion from an instance of problem A into
an instance of problem B

— A conversion from a solution for the instance of
problem B into a solution for the original instance



Polynomial Time Reductions

* We will be more precise now:
* A decision problem A is polynomial-time
reducible to B if:

— We can efficiently convert any instance x of A into
an instance x” of B

— A(x) = True if and only if B(x") = True
* Wewrite A<, B



Polynomial Time Reductions

* Theorem:if A<, BandBisinP,then AisinP

* Proof: Given an instance x of A, use the reduction
to get an instance x” of B. Then solve B using a
polynomial time algorithm



NP-Complete

What if there was some problem B in NP such
that A <, B for all Aiin NP?

fBisin P, thenall Aarein P, so P =NP
f Bisnotin P, then clearly P # NP

f such a B exists, we have reduced the

problem of deciding if P = NP to deciding if B is
iIn NP



NP-Complete

* A decision problem B is NP-Complete if B is in
NP and A <, B forall Ain NP

— Informally: B is as hard as the hardest problems in
NP

* A problem Cis NP-Hard if A <, B for all Ain NP

— In formally: Cis at least as hard as the hardest
problems in NP



Do NP-Complete Problems Exist?

e At first glance, the existence of NP-Complete
problems seems unlikely

* How can one problem be reducible from a the
entire class of infinitely many problems?



Boolean Circuit

Output
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Circuit SAT

* Given a boolean circuit C, is there a setting of
the unknown inputs that makes the circuit
evaluate to “true”?

* Clearly, Circuit SAT is in NP: we can check
whether a setting of the unknown inputs leads
to a “true” by evaluating the circuit



Circuit SAT is NP-Complete

* Theorem: Given any NP problem A, we have
that A <, Circuit SAT



Proof

* Our NP problem A has an efficiently
computable binary relation R such that A(x) =
True if and only if there is a y such that R(x,y)
= True



Proof

* Ris computable in polynomial time

* R can be represented as a boolean circuit!

— The computer that runs R is a boolean circuit Circ
on a chip

— Since R runs in polynomial time, R can be
rendered as a boolean circuit consisting of a
polynomial number copies of Circ, one per unit of
time

— Values of gates in one copy used to compute
values in next



Proof

We have a boolean circuit C that computes R

A(x) = True if and only if there is a y such that
C(x,y) evaluates to true

Let the circuit C, be the circuit C, with the
values for x hardwired

Then C, has a satisfying assignment if and only
if there is a y that makes R(x,y) = True



Proof

 Therefore, for any NP problem A, we have the
following reduction to Circuit SAT:

— Construct the polynomial-sized circuit C that
checks if R(x,y) = True

— For instance x, hardwire the x, obtaining the
circuit C,

— C, is our instance of the Circuit SAT problem



Satisfiability

* A boolean formula is any of the following:
— A variable: x
— The negation of a boolean formula: &
— The disjunction (or) of boolean formulae:
r1V To V T3
— The conjunction (and) of boolean formulae:

(£L‘1 \/.CE_Q) /\LIZ’Q N\ (il?l /\5133)




SAT Problem

 The SAT problem is to, given a boolean
formula, find a satisfying assignment, or
report that none exists.

* Clearly, SAT is a special case of Circuit SAT



Disjunctive Normal Form

* Avariable or its negation are called literals

* Any boolean formula can be massaged into the
following form disjunctive normal form (DNF):
the disjunction of conjunctions of literals

(il?l/\$2 /\ilﬁ_g)\/ili_l\/(ili‘g /\ZE_4/\£IZ‘5)

» Satisfiability of DFS formulas is easy!



Conjunctive Normal Form

e Conjunctive normal form (CNF): conjunction
of disjunction of literals

(Q?l\/xg \/Q7_3V$4)/\Q7_1/\(ZIZ‘2 \/.’,E_4\/CIZ‘5)

* Define a clause to be one of the disjunctions



3 SAT

3SAT is the satisfiability problem on CNF
formula where all clauses have at most 3
literals

(x1 VT3V ag) NT1 A (22 VTaV x5)

3SAT is NP-Complete



Proof

e We will reduce from Circuit SAT

* Given an instance C of circuit say, create a
variable g for each gate, representing the
output of that gate

* For each gate, we will create one or more
clauses that force the variables to be set
correctly



Proof
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Gate g:

Clauses:



Proof
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Proof
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Gate g:
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Proof

* Given a Circuit SAT instance, construct a
variable g for each gate

* Create up to three disjuntive clause for each
gate that force the outputs of each gate to be
correct

e Additionally, if g is the output gate, we add
the clause (g), forcing the output of g to be
True



Proof

* An assignment satisfies the 3SAT instance if
and only if, when we assign the output of each
gate the corresponding value:

— All gates output the correct value
— The output of the whole circuit is True

* Thus, the Circuit SAT instance has a satisfying

assignment if and only if the 3SAT instance
does



Proof

 We have exhibited a poly-time reduction form
Circuit SAT to 3SAT

* Since Circuit SAT is NP-Complete, and 3SAT is
in NP, 3SAT must also be NP-Complete



The Power of NP-Completeness

* We have shown that 3SAT is as hard as any
problem in NP

— |f 3SAT has an efficient algorithm, P = NP
— If not, P # NP

 The general belief is that P # NP
— If so, any NP-Complete problem is hard to solve

— If you can prove your problem is NP-Complete,
you probably shouldn’t bother trying to find an
efficient algorithm for it



A Less Obvious Reduction

* Recall: an independent set of a graph G =
(V,E) is a subset of nodes S such that no edge
nas both endpoints in S

* Independent Set Problem: Given G and a goal
, find an independent set of size k if one
exists




A Less Obvious Reduction

* Given an instance of 3SAT (a collection of k
clauses (z; V z; V zg)
* Construct a graph as follows:

— For each clause, create a triangle, where nodes
are labeled by the literals in the clause

— Connect each node to each of the nodes labeled
with its negation



A Less Obvious Reduction

@VyVZ)A(zVyVz)A(xVyV z)

o




A Less Obvious Reduction

e Suppose the 3SAT instance has a satisfying
assignment

* From each triangle, select a true literal
e Result must be independent set of size k



A Less Obvious Reduction

@VyVZ)A(zVyVz)A(xVyV z)




A Less Obvious Reduction

e Suppose the graph has an independent set of
size at least k

* Then at least one node from each triangle is in
the set

— There can be only one node in each triangle, so
the size is at most k

e Set the corresponding literal to true



A Less Obvious Reduction

* Need to show that setting each literal in the
independent set to true gives a satisfying
assignment, and we never try to set a variable

to be both true and false



A Less Obvious Reduction

* Since every literal has an edge to each of its
negations, if a literal is in the independent set,
none of its negations are

— We will never try to set a variable to be both true
and false

* Since every clause has a literal set to true,

every clause is true, and so the 3SAT instance
is satisfied



What do P and NP Stand For?

e P stands for polynomial time
* NP? Non-deterministic polynomial time



Non-determinism

* |Informally, a non-deterministic algorithm is
one that makes many arbitrary decisions

* A non-deterministic algorithm solves the
decision problem A if

— Provided that A(x) = True, there is some sequence
of choices that makes the algorithm output True

— If A(x) = False, no sequence of choices makes the
algorithm output True.



Equivalence to Our Definition?

* |f a poly-time non-deterministic algorithm
solves A, let R(x,y) be the following relation:

— Run A on input x, and whenever there is an

arbitrary decision to make, look at the next chunk
of y to make the decision

— If there is a sequence of decisions that makes our

algorithm output True, then there is a y making
R(x,y) output True

— |If no such sequence of decisions exist, no such y
exists



Equivalence to Our Definition

* |f a problem A has a poly-time computable
binary relation R(x,y), construct the following
non-deterministic algorithm:

— Run the algorithm for R on input x and an
arbitrary choice for the input y



Reminders

* Final August 17th 2:15 — 3:15 in Skilling
Auditorium
 Material: through Lecture 20 (Monday)

e SCPD students: welcome to take exam on
campus, just let us know by the end of

Monday



