CS 161: Design and Analysis of
Algorithms

Linear Programming Il:
Duality/Reductions

Recap
Example
Duality
Reductions

Recap

Imax E C; U,
1

ZAj,ixi S bj\V/]

Objective Function

Constraints

Profit Maximization

Suppose a candy company can make two types
of candy

The company can produce up to 500 boxes a
day of the first type, each box making the
company S5

They can produce up to 300 boxes of the second
type, which box making them S10

The company can only produce 600 boxes of
candy per day

Profit Maximization

Variables x; and x, represent the number of
boxes of candy 1 and 2 produced

0 <Xy X,
X, <500
X, <300
X, + X, <600

Maximize: 5 x; + 10 x,

Simplex Method

700

600 '
500 —
swof
300 ‘
200 -

100

U T SR ST ST T T SN TN SN SN NN SN SN THN T SN SU S SU T S SU S S S S S S S " |

100 200 300 400 500 &30 700

* X, <500

700

600

500

400

300

200

100

Simplex Method

100

200

300

Simplex Method

* X, <300

700

&0
500

400

300

200

100

100 200 300 400 500 630

Simplex Method

* X; +X,<600

700

600
500

400

300

200 -

100

PO SN SN TR ST SN T N SN T TN T SN U SN T T N S S T PR T T
100 200 00 400 500 &0

Feasible Region

400
300
200
100 [
1 R R A R 1 R A R R 1 A R R A 1 R R . R . R L R 1
100 200 300 400 500 600

Simplex Method

* Recall:
— Start at any vertex of the feasible region

— Repeatedly move to neighboring vertex with more
optimal solution

300

200

Simplex Method

........................

.....

400

3

Simplex Method

Profit: $S3000

?

200

100 [

........................

Profit: $2500

.....

400

3

Simplex Method

Profit: $S3000

2001

100

........................

Profit: $2500

400

3

Simplex Method

Profit: $S3000 Profit: S4500

2001

100

........................

Profit: $2500

400

3

Simplex Method

Profit: $S3000 Profit: S4500

200

100

........................

Profit: $2500

Simplex Method

| Profit: S3000 Profit: S4500
®
Profit: S3500
~ Profit: SO Profit: $2500

Simplex Method

400

Profit: S4500

| X, = 300
X, = 300

100 [

.............................

Why is a vertex always optimal?

Set of points where objective function is equal
to a constant ¢ forms a hyperplane

Change value of objective function by shifting
this hyperplane

Hyperplane must intersect feasible region

Objective function maximized when
Intersection is at an extreme

Objective Function

Proof of Optimality?

 We wish to prove that our solution is optimal
be showing that there is no way to make more
than $4500

Proof of Optimality?

* Recall the LP:
— Maximize: 5 x; + 10 x, subject to the constraints

— 0 <Xy, X
— X, £500
— X, <300
— X, + X, £ 600

Proof of Optimality

Let’s try combining constraints

X, + X, £ 600 = 5x, + 5x, <3000

X, <300 = 5x, <1500

Add together: 5x, + 10x, < 4500

But 5x, + 10x, is just the objective function!

Therefore, the objective function is always at most
S4500, so our solution is optimal

Proof of Optimality

* Goal: combine constraints together to get a
bound on the objective function

max Z C; U,
ZAj,ixi S b]\V/]

Proof of Optimality

Z Y; (Z Aj,z'il%;) < Z b;y;
j i j

Proof of Optimality

 Want bound on objective function, so want

Zcﬂz‘ < Z ZAj,i?Jj L
v J

1

Proof of Optimality

e Sufficient condition:

Ci S ZAj,iyj
J

Proof of Optimality

* Thus, as long as

Ci S ZAj,iyj
J

e We have that

Z CiT; < Z b;y;
J

1

Proof of Optimality

e Goal:

min Z bjyj
J
Z Ay > Vi
J

Duality

Our goal then is to solve another linear
program!

This alternate linear program is known as the
dual of the original program

By construction, optimal solution of dual is at
least optimal solution of primal

Duality Theorem: optimums coincide

Matrix Notation

max ¢’ x miny’ b

Ax <Db yiA>c!

x > () y > 0

Reductions

* We already saw that linear programming can
be used to solve the max flow problem

* What we showed was a reduction: Given an
instance of the max flow problem, we:
— Construct a linear program
— Solve the linear program

— Convert solution of linear program into solution
for max flow

Reduction

* |[n general, solving problem A reduces to
solving problem B if:

— Given an instance of problem A, we can efficiently
compute an instance of problem B***

— Given a solution to the instance of problem B, we

can efficiently construct a solution to the instance
of problem A***

*** Need to define “efficient”

The Power of Reductions

* |f solving problem A reduces to solving
problem B, then we can reuse an algorithm to
solve problem B in order to solve A
— Convert instance of A into instance of B
— Solve B using our algorithm
— Convert solution to solution for A

The Power of Reductions

 What makes linear programming so powerful
is that many problems can be reduced to
linear programs

Reductions so Far

e Max Flow
 Profit Maximization

Bipartite Matching

e Suppose we have a list of n boys and n girls,

and set of pairs (i,j) that mean boy i and girl j
like each other

* Can we pair every boy with a girl so that each
pair likes each other?

Bipartite Matching

50

O— "

Bipartite Matching

Bipartite Matching as Maximum Flow

Bipartite Matching as Maximum Flow

To see if there is a perfect matching, direct all

eco
AC

ges from boy to girl
d a source node s with edges to each boy

AC

d a sink node t with edges from each girl

Compute the max flow

If there is a flow equal to n, then there is a

pe

rfect matching

Bipartite Matching as Maximum Flow

Bipartite Matching as Maximum Flow

* Our Max Flow algorithm always produces an
integer flow if the edge weights are integers

— Always increments flow by integer value

 Therefore, the maximum flow in the bipartite
matching problem has integer flow on each
edge

* To get matching, take edges with flow =1

Bipartite Matching as Maximum Flow

Bipartite Matching as Maximum Flow

9l0100
9l01010

Linear Programming for Shortest Path

* Can think of a path from s to t as a flow of size
1fromstot

* Shortest path problem: find flow that
minimizes total weight of edges

Linear Programming for Shortest Path

Linear Programming for Shortest Path

* Any path from s to t represents an integer
solution to this problem

* Objective function evaluated on such a path is
just equal to the weight of the path

 Will the linear program give integer solution?

Linear Programming for Shortest Path

O

C ([
O

Linear Programming for Shortest Path

Linear Programming for Shortest Path

* |In general, solution to linear program does not
give us a path

e Solution: take any path from s to t using only
edges with non-zero flow

Linear Programming for Shortest Path

Linear Programming for Shortest Path

* Proof of correctness:

— Suppose we have optimal flow F. Let C; be the
cost

— Let P be some path from s to t using only edges
with non-zero flow.

— Let C; be the cost of the flow obtained by sending
1 unit of flow along the edges of P

— Claim: C, < C;

Linear Programming for Shortest Path

* Claim: C, < C;

— Proof: Let r be the minimum amount of flow in F
along any of the edges in P

— Subtract r from the flow along each edge in P

—C.=C.—-rC,

— The size of the flow F’ is 1-r. Multiply the flow in
each edge by 1/(1-r)

— C = (C.—r Cp)/(2-r)

Linear Programming for Shortest Path

* Claim: C, £ C;
— F” is a flow of size 1 with cost C.. = (C. —r C,)/(1-r)
— Therefore, C.. 2 C;

Linear Programming for Shortest Path

CFS CF—TCP
1 —7r
r r
R

Cr >Cp

Linear Programming for Shortest Path

* Proof of correctness:
—C,<C,,s0C, =C,
— Therefore, the path P is also an optimal solution
to the linear program
— Therefore, it must be the shortest path

Reductions

* Reductions allow us to solve one problem
using algorithm for another problem

e Reductions can also be used to show the
impossibility of a good algorithm

Reductions

* Suppose we have some really hard problem A,
and we don’t think we can solve A efficiently

e Suppose further that we have a reduction from
solving A to solving some other problem B

 What if we had an efficient algorithm to solve B?

Applications

* Complexity Theory:
— To prove that we can’t solve some particular

problem A efficiently, we often come up with
some contrived problem B

— B is defined in a way that allows us to prove that B
cannot be solved efficiently

— We then show a reductions from solving B to
solving A, thus showing that A cannot be solved
efficiently

Applications

* Cryptography:
— Prior to the 1970s, cryptographers typically
created schemes that resisted known attacks
— What about attacks that we haven’t though of
yet?

— Goal of modern cryptography: prove no such
attacks exist

Applications

* Cryptography:
— Unfortunately, we have not been able to prove
that any useful scheme is secure against all attacks

— Instead, we start with some hard problem (e.g.
factoring integers)

— We show that if an adversary can break our
scheme, they can solve the hard problem

— Thus, if we assume the problem cannot be solved
efficiently, no adversary can break our scheme
efficiently

