CS 161: Design and Analysis of Algorithms

Linear Programming II: Duality/Reductions

- Recap
- Example
- Duality
- Reductions

Recap

Objective Function

$$\max \sum_{i} c_i x_i$$

$$\sum_{i} A_{j,i} x_i \le b_j \forall j$$

Constraints

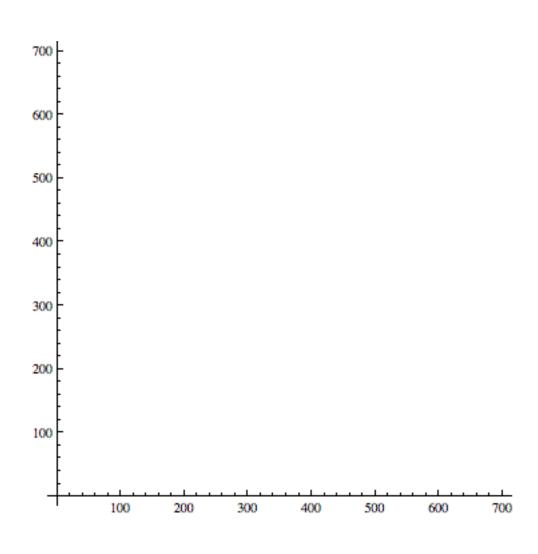
$$x_i \ge 0 \forall i$$

Profit Maximization

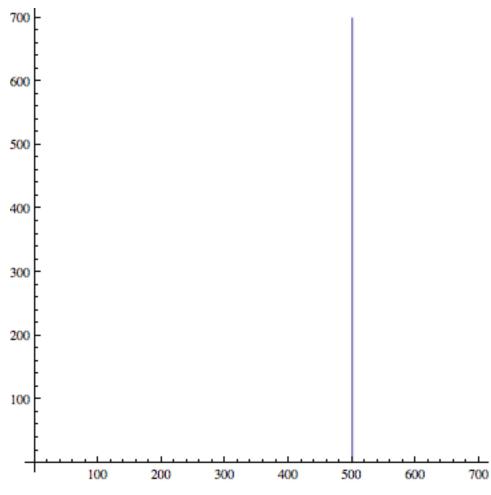
- Suppose a candy company can make two types of candy
- The company can produce up to 500 boxes a day of the first type, each box making the company \$5
- They can produce up to 300 boxes of the second type, which box making them \$10
- The company can only produce 600 boxes of candy per day

Profit Maximization

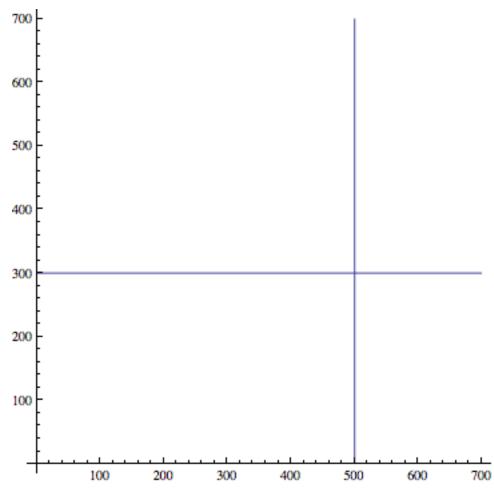
- Variables x₁ and x₂ represent the number of boxes of candy 1 and 2 produced
- $0 \le x_1, x_2$
- $x_1 \le 500$
- $x_2 \le 300$
- $x_1 + x_2 \le 600$
- Maximize: $5 x_1 + 10 x_2$

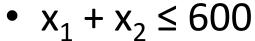


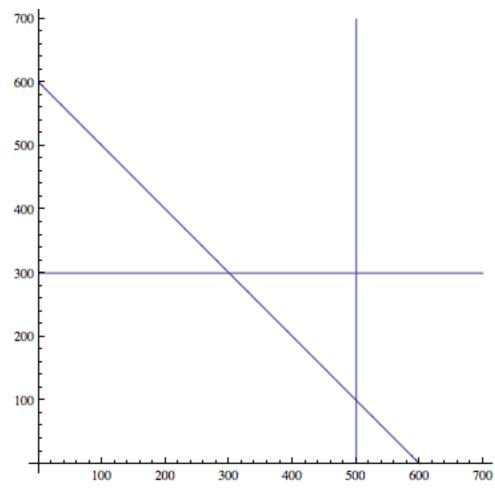
• $x_1 \le 500$



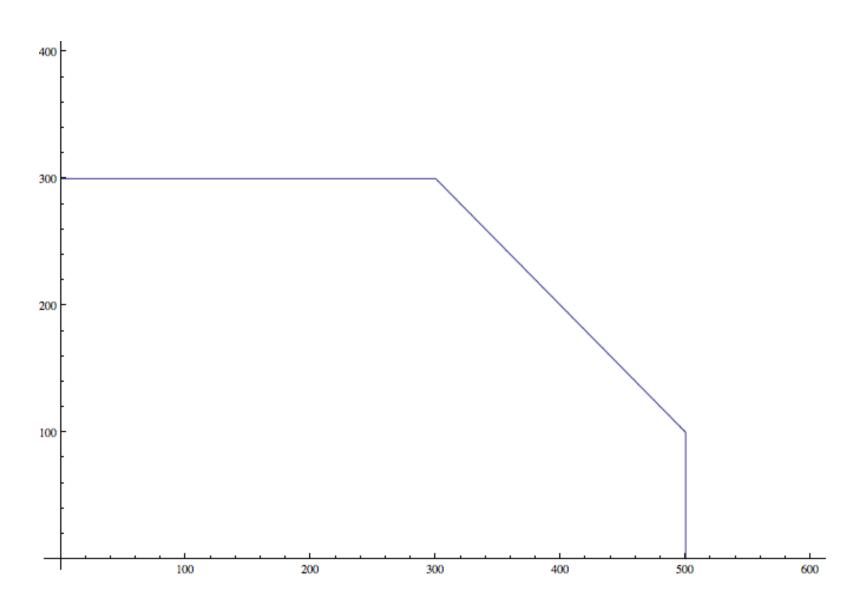
• $x_2 \le 300$





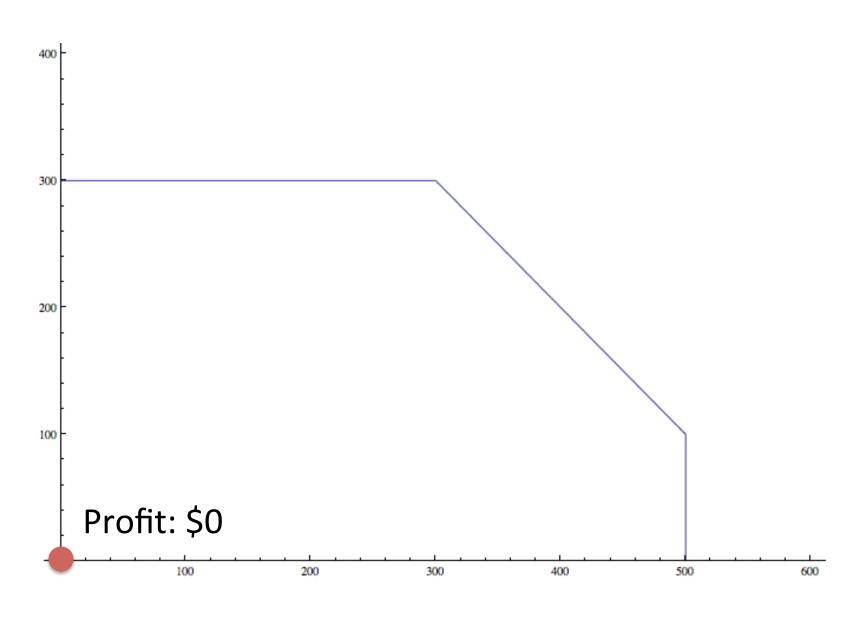


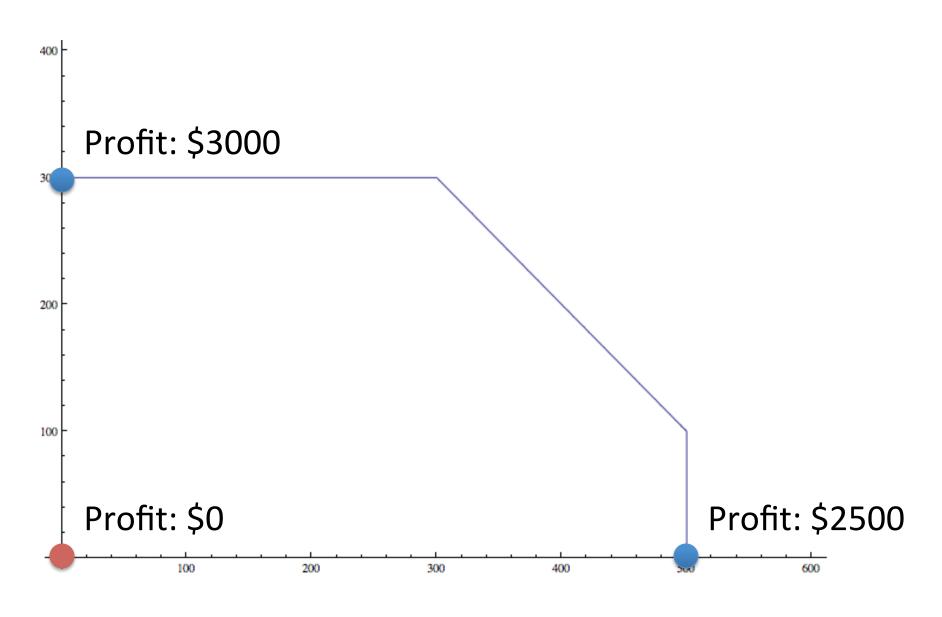
Feasible Region

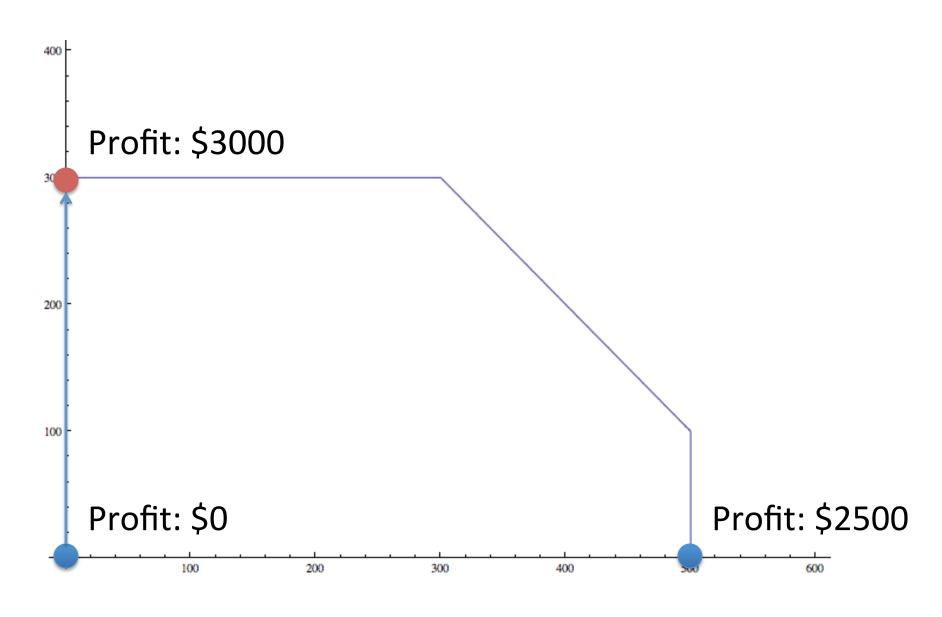


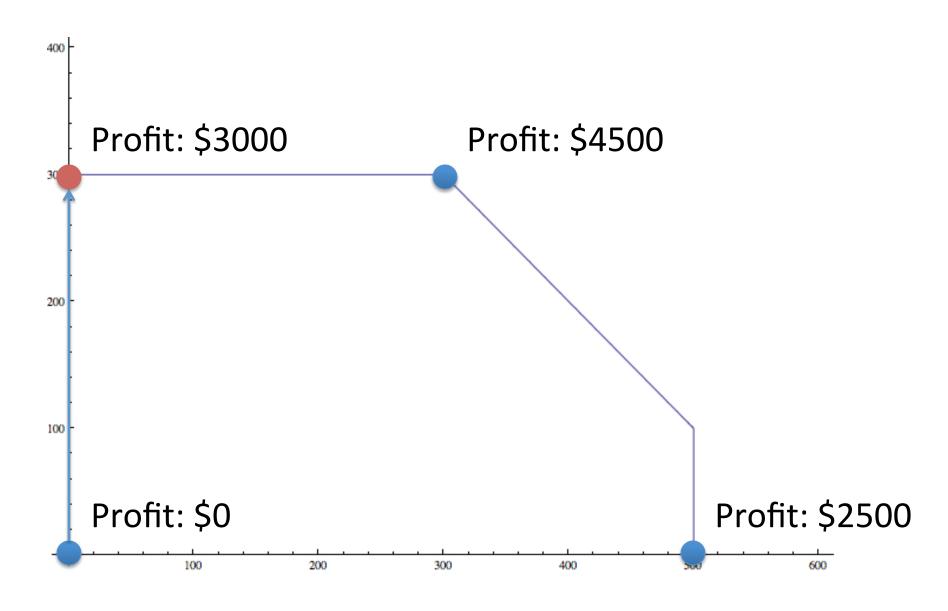
• Recall:

- Start at any vertex of the feasible region
- Repeatedly move to neighboring vertex with more optimal solution

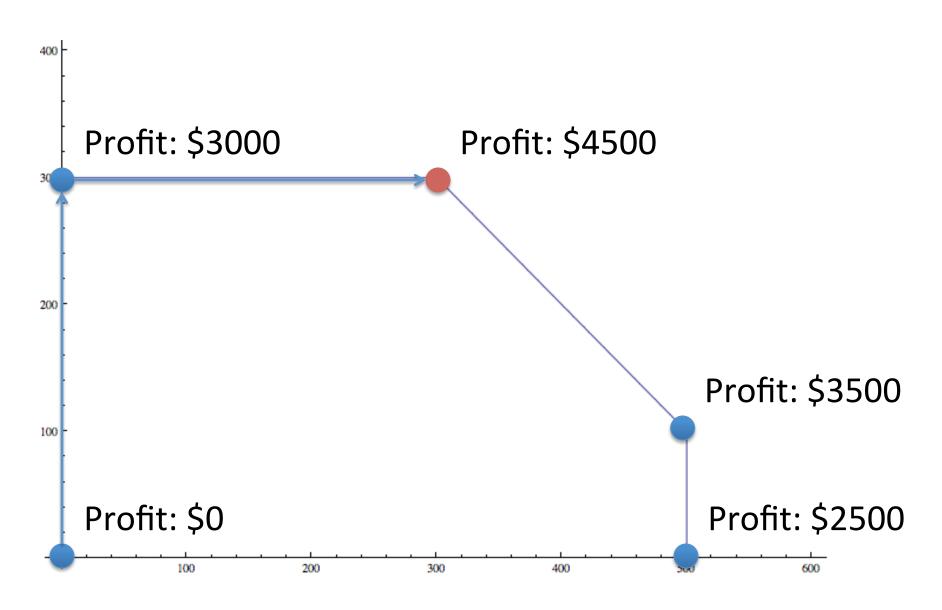








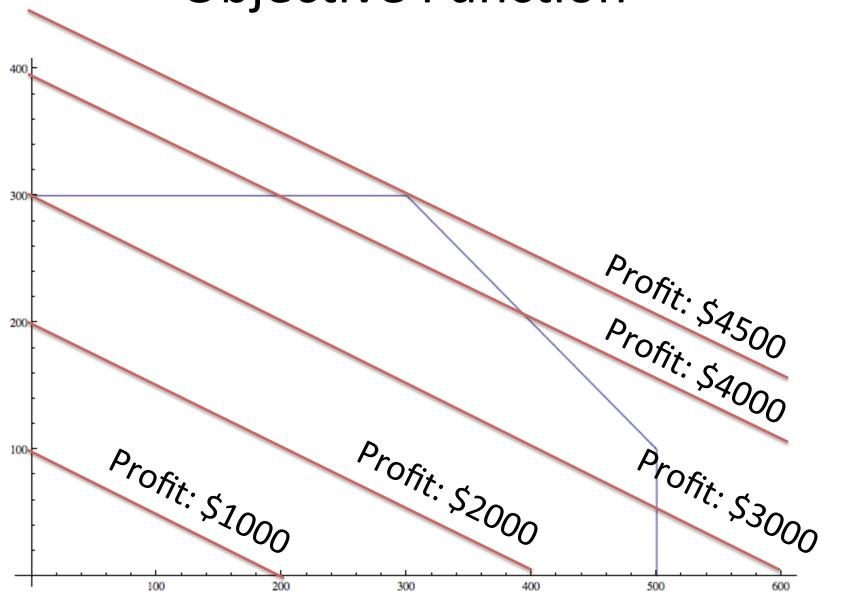




Why is a vertex always optimal?

- Set of points where objective function is equal to a constant c forms a hyperplane
- Change value of objective function by shifting this hyperplane
- Hyperplane must intersect feasible region
- Objective function maximized when intersection is at an extreme

Objective Function



 We wish to prove that our solution is optimal be showing that there is no way to make more than \$4500

Recall the LP:

- Maximize: $5 x_1 + 10 x_2$ subject to the constraints
- $-0 \le x_1, x_2$
- $-x_1 \le 500$
- $-x_2 \le 300$
- $-x_1 + x_2 \le 600$

- Let's try combining constraints
- $x_1 + x_2 \le 600 \rightarrow 5x_1 + 5x_2 \le 3000$
- $x_2 \le 300 \rightarrow 5x_2 \le 1500$
- Add together: $5x_1 + 10x_2 \le 4500$
- But 5x₁ + 10x₂ is just the objective function!
- Therefore, the objective function is always at most \$4500, so our solution is optimal

 Goal: combine constraints together to get a bound on the objective function

$$\max \sum_{i} c_i x_i$$

$$\sum_{i} A_{j,i} x_i \le b_j \forall j$$

$$x_i \geq 0 \forall i$$

$$\sum_{j} y_{j} \left(\sum_{i} A_{j,i} x_{i} \right) \leq \sum_{j} b_{j} y_{j}$$

Want bound on objective function, so want

$$\sum_{i} c_i x_i \le \sum_{i} \left(\sum_{j} A_{j,i} y_j \right) x_i$$

Sufficient condition:

$$c_i \le \sum_j A_{j,i} y_j$$

Thus, as long as

$$c_i \le \sum_j A_{j,i} y_j$$

We have that

$$\sum_{i} c_i x_i \le \sum_{j} b_j y_j$$

• Goal:

$$\min \sum_{j} b_{j} y_{j}$$

$$\sum_{j} A_{j,i} y_i \ge c_i \forall i$$

$$y_i \ge 0 \forall i$$

Duality

- Our goal then is to solve another linear program!
- This alternate linear program is known as the dual of the original program
- By construction, optimal solution of dual is at least optimal solution of primal
- Duality Theorem: optimums coincide

Matrix Notation

$$\max \mathbf{c}^T \mathbf{x}$$

$$\mathbf{x} > 0$$

$$\min \mathbf{y}^T \mathbf{b}$$

$$\mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T$$

$$\mathbf{y} \geq 0$$

Reductions

- We already saw that linear programming can be used to solve the max flow problem
- What we showed was a reduction: Given an instance of the max flow problem, we:
 - Construct a linear program
 - Solve the linear program
 - Convert solution of linear program into solution for max flow

Reduction

- In general, solving problem A reduces to solving problem B if:
 - Given an instance of problem A, we can efficiently compute an instance of problem B***
 - Given a solution to the instance of problem B, we can efficiently construct a solution to the instance of problem A***

The Power of Reductions

- If solving problem A reduces to solving problem B, then we can reuse an algorithm to solve problem B in order to solve A
 - Convert instance of A into instance of B
 - Solve B using our algorithm
 - Convert solution to solution for A

The Power of Reductions

 What makes linear programming so powerful is that many problems can be reduced to linear programs

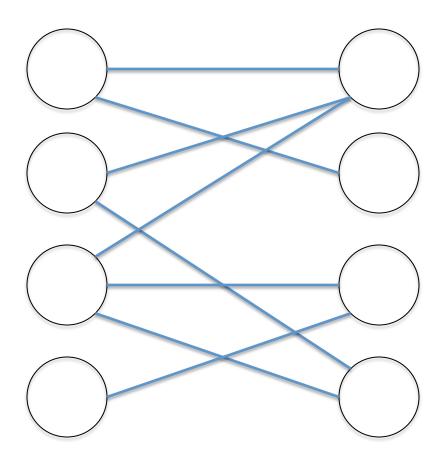
Reductions so Far

- Max Flow
- Profit Maximization

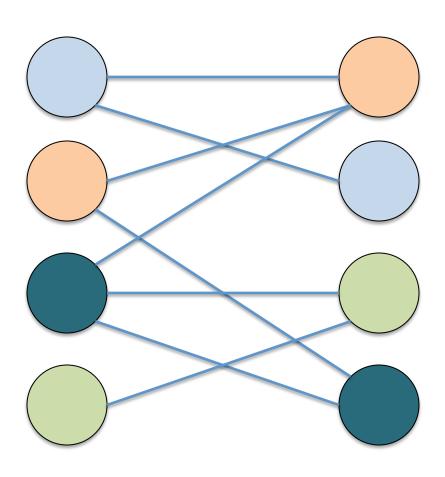
Bipartite Matching

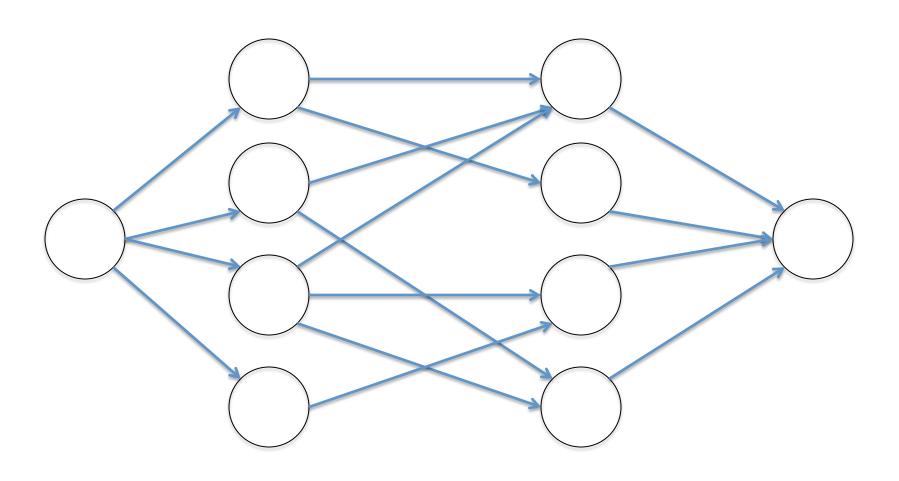
- Suppose we have a list of n boys and n girls, and set of pairs (i,j) that mean boy i and girl j like each other
- Can we pair every boy with a girl so that each pair likes each other?

Bipartite Matching

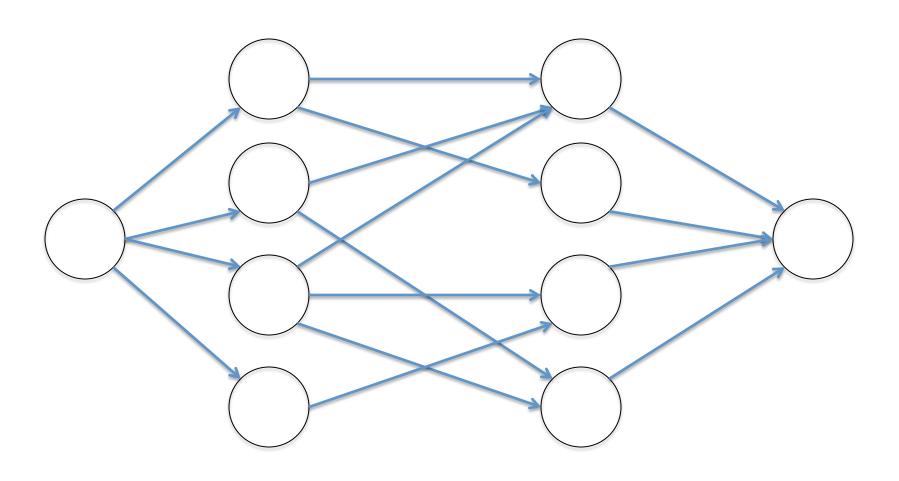


Bipartite Matching

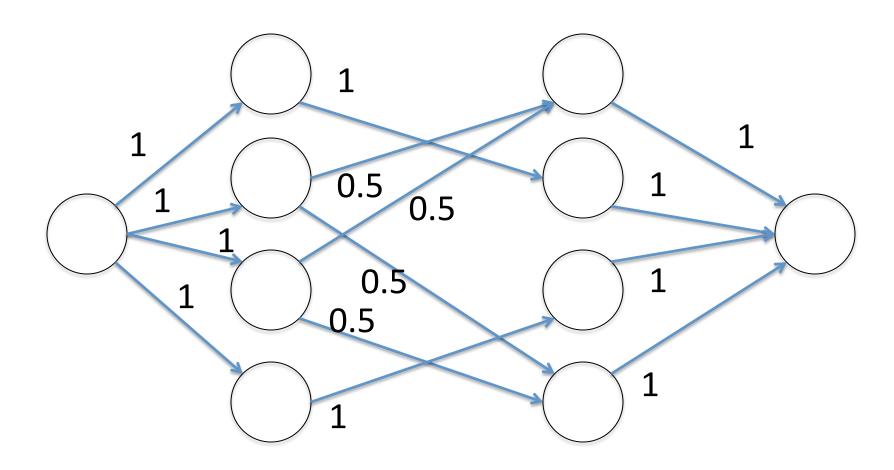




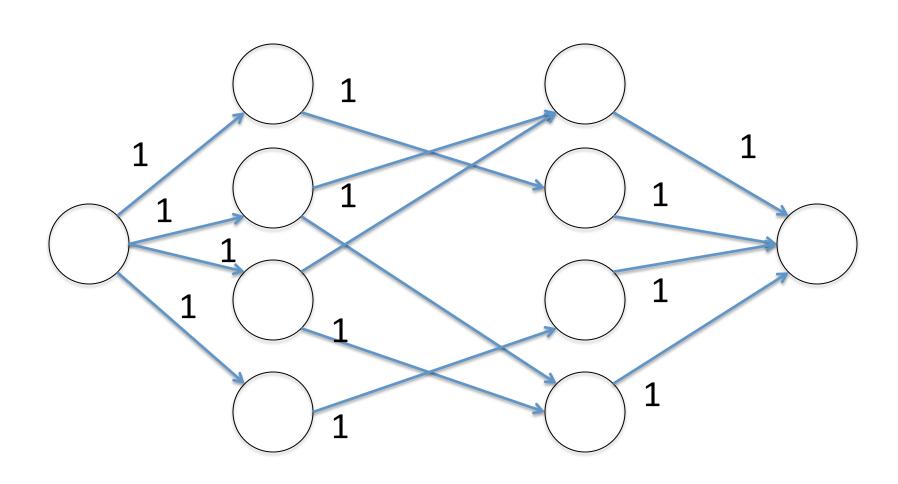
- To see if there is a perfect matching, direct all edges from boy to girl
- Add a source node s with edges to each boy
- Add a sink node t with edges from each girl
- Compute the max flow
- If there is a flow equal to n, then there is a perfect matching

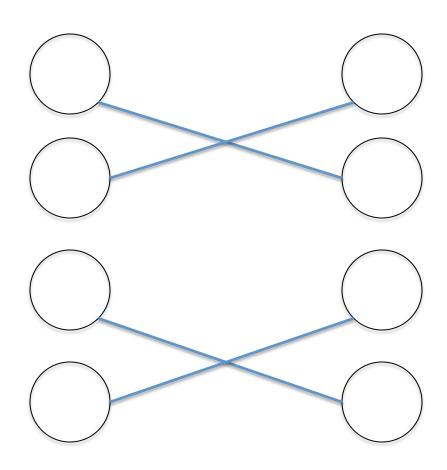


Problem?



- Our Max Flow algorithm always produces an integer flow if the edge weights are integers
 - Always increments flow by integer value
- Therefore, the maximum flow in the bipartite matching problem has integer flow on each edge
- To get matching, take edges with flow =1





- Can think of a path from s to t as a flow of size
 1 from s to t
- Shortest path problem: find flow that minimizes total weight of edges

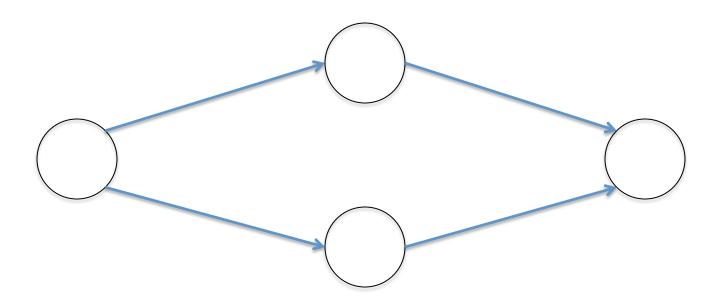
$$\min \sum_{e} f_e w(e)$$

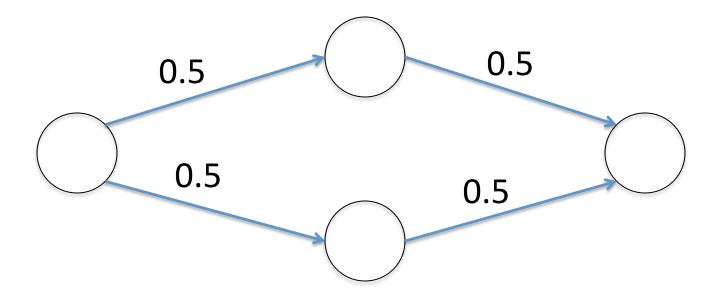
$$\sum_{(u,v)} f_{(u,v)} = \sum_{(v,w)} f_{(v,w)} \forall v \neq s, t$$

$$\sum_{(s,v)} f_{(s,v)} = 1$$

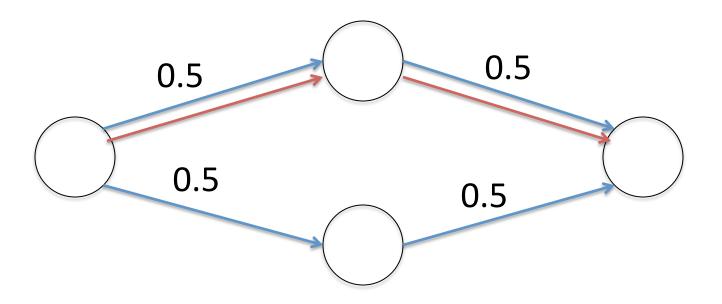
$$f_e \ge 0$$

- Any path from s to t represents an integer solution to this problem
- Objective function evaluated on such a path is just equal to the weight of the path
- Will the linear program give integer solution?





- In general, solution to linear program does not give us a path
- Solution: take any path from s to t using only edges with non-zero flow



Proof of correctness:

- Suppose we have optimal flow F. Let C_F be the cost
- Let P be some path from s to t using only edges with non-zero flow.
- Let C_P be the cost of the flow obtained by sending
 1 unit of flow along the edges of P
- Claim: $C_p \le C_F$

- Claim: $C_P \leq C_F$
 - Proof: Let r be the minimum amount of flow in F along any of the edges in P
 - Subtract r from the flow along each edge in P
 - $-C_{F'} = C_F rC_P$
 - The size of the flow F' is 1-r. Multiply the flow in each edge by 1/(1-r)
 - $-C_{F''} = (C_F r C_P)/(1-r)$

- Claim: $C_P \leq C_F$
 - F'' is a flow of size 1 with cost $C_{F''} = (C_F r C_P)/(1-r)$
 - Therefore, $C_{F''}$ ≥ C_F

$$C_F \le \frac{C_F - rC_P}{1 - r}$$

$$\frac{r}{1 - r}C_F \ge \frac{r}{1 - r}C_P$$

$$C_F \ge C_P$$

Proof of correctness:

- $-C_p \le C_F$, so $C_p = C_F$
- Therefore, the path P is also an optimal solution to the linear program
- Therefore, it must be the shortest path

Reductions

- Reductions allow us to solve one problem using algorithm for another problem
- Reductions can also be used to show the impossibility of a good algorithm

Reductions

- Suppose we have some really hard problem A, and we don't think we can solve A efficiently
- Suppose further that we have a reduction from solving A to solving some other problem B
- What if we had an efficient algorithm to solve B?

Applications

- Complexity Theory:
 - To prove that we can't solve some particular problem A efficiently, we often come up with some contrived problem B
 - B is defined in a way that allows us to prove that B cannot be solved efficiently
 - We then show a reductions from solving B to solving A, thus showing that A cannot be solved efficiently

Applications

- Cryptography:
 - Prior to the 1970s, cryptographers typically created schemes that resisted known attacks
 - What about attacks that we haven't though of yet?
 - Goal of modern cryptography: prove no such attacks exist

Applications

Cryptography:

- Unfortunately, we have not been able to prove that any useful scheme is secure against all attacks
- Instead, we start with some hard problem (e.g. factoring integers)
- We show that if an adversary can break our scheme, they can solve the hard problem
- Thus, if we assume the problem cannot be solved efficiently, no adversary can break our scheme efficiently