CS 161: Design and Analysis of Algorithms

Linear Programming I: Maximum Flow

- Definition
- Algorithm
- Max Flow/Min Cut
- Linear Programming

Flows in Graphs

- Given a weighted graph G=(V,E), two nodes s and t
 - Weights represent capacities
 - s represents the source, t represents the target
- A flow is a setting of variables f_e for all edges e in E such that
 - $-0 \le f_e \le w(e)$
 - For any node n other than s or t,

$$\sum_{(u,v)\in E} f_{(u,v)} = \sum_{(v,w)\in E} f_{(v,w)}$$

Maximum Flow

• A maximum flow is a flow that maximizes the amount leaving s (or entering t). That is,

$$\sum_{(s,v)} f_{(s,v)} - \sum_{(v,s)} f_{(v,s)}$$

Maximum Flow

Maximum Flow

How to Compute Maximum Flow

- How can we compute any flow?
 - Find path in graph from s to t
 - Put 1 unit of flow along each edge in graph (or better yet, maximum possible)
- Given a flow, how can we compute a better flow?
 - Compute residual capacities, the remaining capacity of each edge
 - Compute flow in using residual capacities

- Choosing a bad path can result in the wrong answer
- Solution: allow flows to cancel

Min Cut

- For any cut (C,V-C) where C contains s and V-C contains t, let the weight of the cut be the sum of the weights of all edges from C into V-C
- Observation: No flow can be greater than the weight of any cut

- Theorem: The weight of the maximum flow is equal to the weight of the minimum cut
- Proof: Suffices to show a flow and a cut with the same weight

- Our algorithm for max flow halts exactly when the residual flow graph has no paths from s to t
- Run explore from s on the residual graph
- Let C be set of visited nodes, V-C set of unvisited nodes
- Claim: the cut (C,V-C) has the same weight as the flow

- In residual graph G^F, no edges from C to V-C
- Therefore, in G, every edge from C to V-C has its capacity used up
- Weight of cut = sum of weights of edges from
 C to V-C = amount of flow from s to t

Max Flow Algorithm

- We showed that our flow algorithm yields a flow that is equal to the weight of a cut
- Therefore, our flow is optimal, and the min cut is equal to the max flow
- We can also modify our algorithm to obtain the max cut
 - We can prove to someone else that our flow is optimal

Max Flow Algorithm

- Running Time?
 - Each updates requires O(|E|) time
 - How many updates?
 - Naïve answer: each update increases flow by at least 1, so if max flow has weight W, running time is O(|E| W)
 - What if W is huge?

Max Flow Algorithm

- What if we always find the path with the largest bottleneck?
 - "Fattest" path
 - Can show O(|E| log W) iterations,
 - Time: $O(|E|^2 \log W)$
 - Since log W is the number of bits needed to represent W, this is polynomial time
- What if we use BFS?
 - Can show O(|E||V|) iterations

- An algorithm is said to run in polynomial time if it runs in O(n^c) where n is the size of the input
 - Graph G = (V,E) has size O(|V| + |E|)
 - Integer W has size O(log W)

- Two models of computation:
 - Model 1: Treat all integers as consuming a constant amount of space and requiring a constant amount of time for all arithmetic operations
 - Model 2: All integers require O(log n) space and arithmetic operations take the correct amount of time.

Strongly Polynomial Time:

- The running time is polynomial in Model 1. That is, the number of arithmetic operations is $O(n^c)$ where n is the number of integers in the input.
- The space used is polynomial in the Model 2 (correct) size of the input

Strongly Polynomial Time:

- Any strong polynomial time algorithm can be converted into a polynomial time algorithm by replacing O(1)-time operations with correct operations
- $O(|V|^2 |E|)$ does not depend on the size of the weights, so it is strong polynomial time

Weak Polynomial Time:

- Polynomial time, but not strong polynomial
- $O(|V|^2 \log W)$ is polynomial, but number of operations in not just function of of number of integers (|E|), but also of their size

Max Flow as Linear Programming

- Recall what we are computing:
 - We have variables f_e for all edges e
 - We require that $0 \le f_e \le w(e)$ for all e
 - We also require that, for all nodes v,

$$\sum_{(u,v)\in E} f_{(u,v)} = \sum_{(v,w)\in E} f_{(v,w)}$$

We want to maximize

$$\sum_{(s,v)} f_{(s,v)} - \sum_{(v,s)} f_{(v,s)}$$

Max Flow as Linear Programming

- We can write the max flow problem as follows:
 - Maximize $\sum_e c_e f_e$

– Subject to the constraints:

$$f_e \ge 0 \qquad f_e \le w(e)$$

$$\sum_{e} a_{i,e} f_e = 0 \forall i$$

- Set of variables x_i
- Goal: maximize $\sum_{i} c_i x_i$
- Subject to the constraints

$$\sum_{i} A_{j,i} x_i \le b_j \forall j$$

$$x_i \ge 0 \forall i$$

- Variants
 - Can be max or min problem
 - Constrains can be equations or inequalities
 - Variables can be only non-negative, or unrestricted in sign
- Turns out all equivalent!

Convert max problem to min?

$$\max \sum_{i} c_{i} x_{i} \longrightarrow \min \sum_{i} (-c_{i}) x_{i}$$

Min to max?

$$\min \sum_{i} c_i x_i \longrightarrow \max \sum_{i} (-c_i) x_i$$

Equations to inequalities?

$$\sum_{i} a_i x_i = b \longrightarrow \sum_{i} a_i x_i \le b$$

Inequalities to equations?

$$\sum_{i} a_i x_i \le b \longrightarrow \sum_{i} a_i x_i + z = b$$

- Unrestricted to non-negative?
 - For each variable x, introduce new variables x⁺, x⁻
 - Add constraints x^+ ≥ 0, x^- ≥ 0
 - Replace each occurrence of x with x⁺ x⁻

Solving Linear Programming

$$\max \sum_{i} c_i x_i$$

$$\sum_{i} A_{j,i} x_i \le b_i \forall j$$

$$x_i \geq 0 \forall i$$

Solving Linear Programming

- Each inequality defines a plane, feasible solutions all to one side of plane (half-space)
- Intersection of all half-spaces is feasible region. Result is a polytope
- Theorem: maximum solution must lie on a vertex of the polytope

The Simplex Algorithm

- Start at any vertex of the polytope, and repeatedly:
 - Follow an edge from the current vertex to a more optimal vertex
 - Stop when the current vertex is better than all its neighbors

Simplex and Max Flow

- Starting with a solution, and repeatedly improving is exactly what we did in our max flow algorithm
- Simplex algorithm on max flow problem gives exactly the algorithm we had

The Simplex Algorithm

- Issues:
 - Finding a starting point
 - If we pick a bad edge to follow, can run poorly
- Though not polynomial time on all instances, simplex tends to work well on many realworld inputs

- Invented during WWII
- 1947 Simplex method
- 1979 Provably weak polynomial time
- Unlike the max flow algorithm, no algorithm known that solves linear programming in strongly polynomial time