CS 161: Design and Analysis of
Algorithms

Linear Programming |:
Maximum Flow
Definition
Algorithm

Max Flow/Min Cut
Linear Programming

Flows in Graphs

e Given a weighted graph G=(V,E), two nodes s
and t
— Weights represent capacities
— s represents the source, t represents the target

* Aflow is a setting of variables f, for all edges e
in E such that
—0<f, <wle)

— For any node n other than s or t,

Z f(u,v): Z f(v,w)

(u,v)EE (vyw)eE

Maximum Flow

e A maximum flow is a flow that maximizes the
amount leaving s (or entering t). That is,

Maximum Flow

Maximum Flow

How to Compute Maximum Flow

* How can we compute any flow?
— Find path in graph fromstot

— Put 1 unit of flow along each edge in graph (or
better yet, maximum possible)

* Given a flow, how can we compute a better
flow?

— Compute residual capacities, the remaining
capacity of each edge

— Compute flow in using residual capacities

Computing Maximum Flow

Computing Maximum Flow

Computing Maximum Flow
1
2
@
oo
@/Q\@

O

Computing Maximum Flow
1
@
oG
O
@/@1\®

O

Computing Maximum Flow
1
@
G 1L
O
@/@1\®

O

Computing Maximum Flow

Q Al

Computing Maximum Flow

Computing Maximum Flow

Computing Maximum Flow

Computing Maximum Flow

Problem!

Problem!

Problem!
@1\®
@1\6

2

Problem!

* Choosing a bad path can result in the wrong
answer

e Solution: allow flows to cancel

Cancelling Flows

Cancelling Flows
, A
ol s
O

2

Cancelling Flows
1
2
@
ol o
\

2

Cancelling Flows

o PeC

Cancelling Flows

o PeC

Min Cut

* For any cut (C,V-C) where C contains s and V-C
contains t, let the weight of the cut be the sum
of the weights of all edges from C into V-C

* Observation: No flow can be greater than the
weight of any cut

Max Flow/Min Cut

Max Flow/Min Cut

* Theorem: The weight of the maximum flow is
equal to the weight of the minimum cut

 Proof: Suffices to show a flow and a cut with
the same weight

Max Flow/Min Cut

Our algorithm for max flow halts exactly when
the residual flow graph has no paths fromstot

Run explore from s on the residual graph

Let C be set of visited nodes, V-C set of
unvisited nodes

Claim: the cut (C,V-C) has the same weight as
the flow

Max Flow/Min Cut

* In residual graph GF, no edges from C to V-C

 Therefore, in G, every edge from C to V-C has
its capacity used up

 Weight of cut = sum of weights of edges from
C to V-C = amount of flow from s to t

Max Flow/Min Cut

Max Flow/Min Cut

Max Flow Algorithm

 We showed that our flow algorithm yields a
flow that is equal to the weight of a cut

* Therefore, our flow is optimal, and the min
cut is equal to the max flow

 We can also modify our algorithm to obtain
the max cut

— We can prove to someone else that our flow is
optimal

Max Flow Algorithm

* Running Time?
— Each updates requires O(|E|) time
— How many updates?

— Naive answer: each update increases flow by at
least 1, so if max flow has weight W, running time
is O(|E| W)

— What if W is huge?

Max Flow Algorithm

 What if we always find the path with the
largest bottleneck?

— “Fattest” path
— Can show O(|E| log W) iterations,
— Time: O(|E|? log W)

— Since log W is the number of bits needed to
represent W, this is polynomial time

 What if we use BFS?
— Can show O(|E| |V]) iterations

Strong vs Weak Polynomial Time

* An algorithm is said to run in polynomial time
if it runs in O(n¢) where n is the size of the
Input
— Graph G=(V,E) has size O(|V|+]|E|)

— Integer W has size O(log W)

Strong vs Weak Polynomial Time

 Two models of computation:

— Model 1: Treat all integers as consuming a
constant amount of space and requiring a
constant amount of time for all arithmetic
operations

— Model 2: All integers require O(log n) space and
arithmetic operations take the correct amount of
time.

Strong vs Weak Polynomial Time

e Strongly Polynomial Time:

— The running time is polynomial in Model 1. That
is, the number of arithmetic operations is O(n¢)
where n is the number of integers in the input.

— The space used is polynomial in the Model 2
(correct) size of the input

Strong vs Weak Polynomial Time

e Strongly Polynomial Time:

— Any strong polynomial time algorithm can be
converted into a polynomial time algorithm by
replacing O(1)-time operations with correct
operations

— O(|V|? |E|) does not depend on the size of the
weights, so it is strong polynomial time

String vs Weak Polynomial Time

* Weak Polynomial Time:
— Polynomial time, but not strong polynomial

— O(|V|? log W) is polynomial, but number of
operations in not just function of of number of
integers (|E|), but also of their size

Max Flow as Linear Programming

* Recall what we are computing:
— We have variables f, for all edges e
— We require that 0 < f_, < w(e) for all e
— We also require that, for all nodes v,
> Juw = D fow
(u,v)EE (vyw)eE

— We want to maximize

Z f(s,v) — Z f(v,s)

(s,v) (v,s)

Max Flow as Linear Programming

 We can write the max flow problem as
follows:

(&

— Subject to the constraints:

erO feéw((i)

Z ai,efe = V2

€

Linear Programming

* Set of variables x
Goal: maximize } :Cz’xz’

i
e Subject to the constraints

ZAJ',@%' < b;Vj

Linear Programming

* Variants
— Can be max or min problem
— Constrains can be equations or inequalities

— Variables can be only non-negative, or
unrestricted in sign

* Turns out all equivalent!

Linear Programming

* Convert max problem to min?
max E c;T; — min E (—c;)x;
i i

* Min to max?

min Z C;T; — max Z(—Ci)l’i
i i

Linear Programming

* Equations to inequalities?

. D i @i < b
Zazxz =b— S iz > b
1

* |[nequalities to equations?

" 2. @iTi+2=b
ZazngbH 2> 0

Linear Programming

* Unrestricted to non-negative?
— For each variable x, introduce new variables x*, x
— Add constraints x*>0,x >0

— Replace each occurrence of x with x* - x°

Solving Linear Programming
maxz C;U;
ZAJ',@'QZ‘@' < b;Vj

Solving Linear Programming

* Each inequality defines a plane, feasible
solutions all to one side of plane (half-space)

* |[ntersection of all half-spaces is feasible
region. Result is a polytope

e Theorem: maximum solution must lie on a
vertex of the polytope

The Simplex Algorithm

e Start at any vertex of the polytope, and
repeatedly:

— Follow an edge from the current vertex to a more
optimal vertex

— Stop when the current vertex is better than all its
neighbors

Simplex and Max Flow

e Starting with a solution, and repeatedly
improving is exactly what we did in our max
flow algorithm

* Simplex algorithm on max flow problem gives
exactly the algorithm we had

The Simplex Algorithm

* |ssues:
— Finding a starting point
— |If we pick a bad edge to follow, can run poorly

* Though not polynomial time on all instances,
simplex tends to work well on many real-
world inputs

Linear Programming

Invented during WWII
1947 — Simplex method
1979 - Provably weak polynomial time

Unlike the max flow algorithm, no algorithm
known that solves linear programming in
strongly polynomial time

