CS 161: Design and Analysis of
Algorithms

Dynamic Programming I:
Sequence Alignment/Edit Distance
Definition
Algorithm
Underlying dag

Variants
Other problems

String Distances

 Want to find strings that are “close” to each
other

— Example: spellcheckers want to find a word that is
close by to a misspelled word

— Example: find DNA sequences that are similar

 What is a good measure of closeness?

Sequence Alignment

S — N OWY
S UNN — Y

* A way of writing to strings next to each other,
showing edits

Sequence Alignment

* Common Operations
— Insertions: insert a character into a string
— Deletions: delete a character from a string
— Substitutions: replace character with another
— Swap: swap adjacent characters

 Many possible types of alignments based on
which operations we choose to consider

Edit Distance

Associate a cost to every alighment
Possibilities:

— All operations have cost 1

— Different operations have different costs
— Cost depends on characters involved

Edit distance = minimum cost over all possible
alignments

Optimal sequence alighnment = alighment with
minimum cost

Levenshtein Distance

* Operations: insertions, deletions, substitutions
e Cost: 1 per operation

S — NOWY
S UNN - Y

Cost: 3

Dynamic Programming Solution

* Suppose we have an optimal alighment A.
* Look at the characters of each string in the
last position. Either:
— They are the same
— They are different
—Oneisa ‘-’

Dynamic Program Solution

e Comparing stringsSand T

* Let E(i,j) be the cost of the solution for the
first i characters of S and the first j characters
of j

* Objective: compute E(|S]|,|T|)

Dynamic Programming Solution

* Consider rightmost column of solution E(i,j).
* Can only be three things:

1 1

T - L5

Cost: Oorl 1 1
Must align: E(i-1,j-1) E(i-1,j) E(i,j-1)

Dynamic Programming Solution

* Let diff(i,j) =0if S, =T, 1 otherwise
* E(i,j) = min{diff(i,j) + E(i-1,j-1),

1+ E(i-1,j),

1+ E(i,j-1)}

Dynamic Programming Solution

e Base cases: E(i,0) = |, E(0,j) = j
* Running Time:

— Computing solution to each subproblem takes
constant time

— |S| * |T| subproblems
- O(|S| [T])

Underlying Dag

. QL QL QL QL O
OIS INDIN
RANNNY
Q‘C"‘C"‘C"‘C"‘C"‘
NAVAVAVANIN

Q Q Q Q Q Q C
OSSN
SANNN
0‘0"‘0"‘0"‘“‘0“
NAVIVVAVIN

Underlying Dag

Algorithm

Fori=0,1, .., |S|:E(i,0) =i
Forj=0,1, .. |T|:E(O,j) =]j
Fori=0,1, ... |S]:
Forj=0,1, .., |T]:
E(i,j) = min{diff(i,j) + E(i-1,j-1),
1+ E(i-1,j),
1+ E(i,j-1)}

Return E(|S]|,|T])

Finding Optimal Alignment

* To find the actual optimal sequence

alignment, need to store partial solutions as
wel

e A(i,j) = optimal sequence alignment for first i
characters of S, first j characters of t

Finding Optimal Alignment

* Perform checks:

— If diff(i,j) + E(i-1,j-1) is minimum, A(i,j) is the
alignment A(i-1,j-1), adding a last column
consisting of the last letterof Sand T

— If 1 + E(i-1,j) is minimum, A(i,j) is A(i-1,j), adding a
last column consisting of the last letter of S, and a
dash for T

— Similar for 1 + E(i,j-1) being minimum

Example

S — IIFORH T — IIIFU

E(0,0) =
E(1,0) =

E(2,0) =
E(3,0) =
E(0,1) =

E(0,2) =

0, A(0,0) = (“”, “”)

1, A(1,0) = (“F”, “~”

2, A(2,0) = (“FO”, “— ="

3, A(3,0) = (“FOR”, “—— ="
1, A(0,1) = (“~", “1)

2, A(0,2) = (“— =", “IF”)

Example

e S=“FOR”, T="“IF"

e E(1,1):
— diff(i,j) + E(i-1,j-1)=1+0=1
—1+E(-1,j)=1+1=2
—1+E(i,j-1)=1+1=2
— Therefore, E(1,1) =1, A(1,1) = (“F”, “1”)

Example

e S=“FOR”, T="“IF"

e E(1,2):
— diff(i,j) + E(i-1,j-1)=0+1=1
—1+E(i-1,j)=1+2=3
—1+E(ij1)=1+1=2
— Therefore, E(1,2) = 1, A(1,2) = (“—F", “IF”)

Example

e S=“FOR”, T="“IF"

e E(2,1):
— diff(i,j) + E(i-1,j-1)=1+1=2
—1+E(-1,j)=1+1=2
—1+E(i,j-1)=1+2=3
— Therefore, E(1,2) = 2, A(1,2) = (“FO”, “—1")

Example

e S=“FOR”, T="“IF"

e E(2,2):
— diff(i,j) + E(i-1,j-1)=1+1=2
—1+E(-1,j)=1+1=2
—1+E(i,j-1)=1+2=3
— Therefore, E(2,2) = 2, A(2,2) = (“FO”, “IF”)

Example

e S=“FOR”, T="“IF"

e E(3,1):
— diff(i,j) + E(i-1,j-1)=1+2=3
—1+E(-1,)=1+2=3
—1+E(i,j-1)=1+3=4
— Therefore, E(3,1) = 3, A(3,1) = (“FOR”, “——I")

Example

e S=“FOR”, T="“IF"

e E(3,2):
— diff(i,j) + E(i-1,j-1)=1+2=3
—1+E(-1,)=1+2=3
—1+E(i,j-1)=1+3=4
— Therefore, E(3,1) = 3, A(3,1) = (“FOR”, “—IF”)

Variants

e Easy to modify algorithm to handle variants
 Example: no replacements
— E(i,j) = min{1 + E(i-1,)),
1+ E(i,j-1)}

Variants

* Weighted Operations
— Insertions/deletions get cost d
— Replacing x with x’ get cost C(x,x’)
— E(i,j) = min{C(S, T;) + E(i-1,j-1),
d + E(i-1,j),
d+ E(i,j-1)}

Longest Increasing Subsequence

Given sequence of numbers (a,, ..., a,)
A subsequence is a subset taken in order
- EX: (az, a3, a6, alO, ...)

An increasing subsequence is one where
numbers get strictly larger

—Ex:ta,=3,a;=7,a,=9,a,,=12, ...

Goal: find longest increasing subsequence

Longest Increasing Subsequence

* Let E(i) be length of longest increasing
subsequence of (a,, ..., a))
* Either longest sequence includes a, or it

doesn’t

— If it does, length of longest sequence is E(j) + 1 for
some j with a; < a,

— Otherwise, E(i-1)

Longest Increasing Subsequence

* Algorithm:
E(0) =1
Fori=1, ..., n:
E(i) = max{E(i-1),
1+E(j) for j such that a, < a;}
Return E(n)

Longest Increasing Subsequence

* Running Time?
— For each E(i), need to minimize over potentially all
E(j) for j<i
— Running time O(n?)

Underlying Dag

* Arrow fromjtoiifa,<a,orj=i-1
 Example: (5,2,8,6,3)

RO 0050

An Alternate Approach

e Let F(i) be the length of the longest increasing
subsequence ending with a.

* F(i) = 1 + max(L(j) for a; < a))

Underlying Dag

* Arrow fromjtoiif 3, < g
 Example: (5,2,8,6,3)

) (2e) (o) (3

e Solution = longest path in dag

Independent Sets In Trees

Given a graph G = (V,E), a subset of nodes S in
independent if there are no edges between
nodes of S

Goal: find largest independent set
In general, very hard problem
Special case: Trees

Independent Sets in Trees

Independent Sets in Trees

F(v): maximal independent set for subtree
rooted at v

Either F(v) contains v, or it doesn’t

— If it does, F(v) =1 + Sum(F(u): u grandchild of v)
— Otherwise, F(v) = Sum(F(u): u child of v)

Base case: leaves get F(v) =1

Work way up to root

Underlying dag: tree with edges pointing to
parent

Algorithm

Each node has two values:
— F(v): size of maximum independent set
— C(v): sum of F(v) values for children

C(v) = Sum(F(u): u child of v)
F(v) = max(1 + Sum(C(u): u child of v), C(v))
Running time: O(|V| + |E]|)

Midterm Statistics

* Average: 126/200
e Standard Deviation: 35

12

8

6

4

| I

N B

61-80 81-100 101-120 121-140 141 - 160 161-180 181-200

