CS 161: Design and Analysis of Algorithms

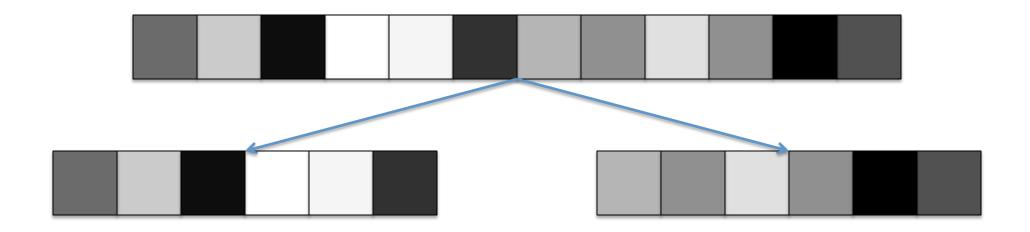
Midterm

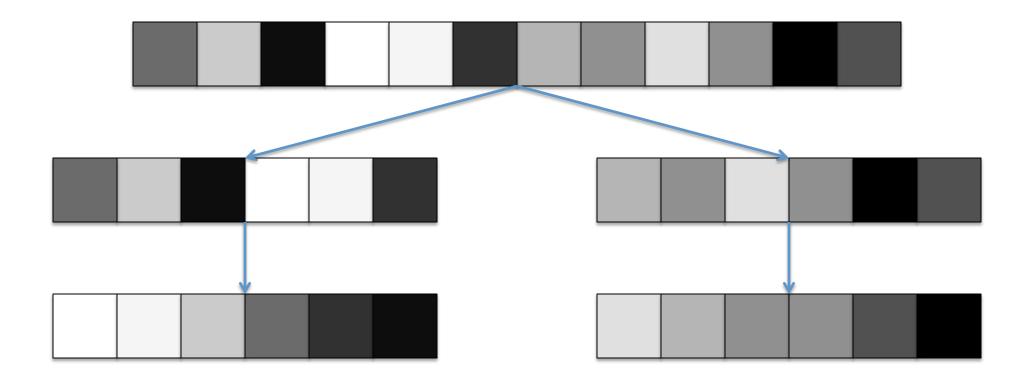
- Wednesday, July 25th in class 2:15 3:30
- Covers material through today
- No bluebooks needed
- SCPD students:
 - Can take exam on campus, let us know by Monday
 - Otherwise, must take at scheduled time with exam proctor

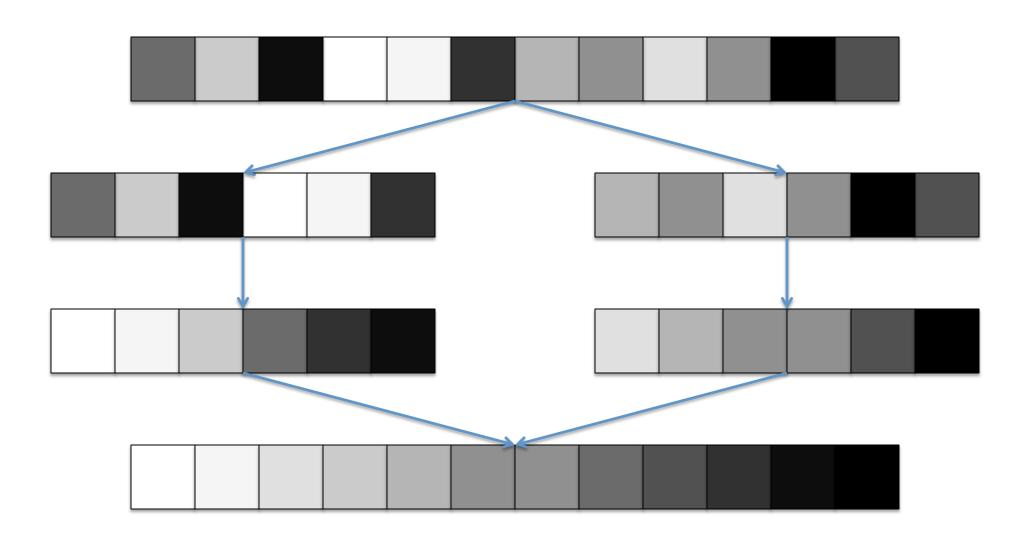
Divide & Conquer II: Sorting/Median Finding

- Merge Sort
- Quick Sort
- Sorting Lower Bound
- Median Finding

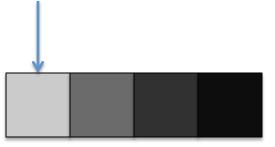
- Want to sort a list of n elements
- Divide and conquer approach:
 - Split list into two sublists of size n/2
 - Recursively sort each sublist
 - Construct sorted list by merging sorted sublists



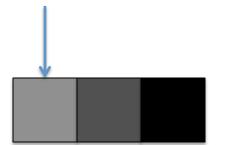


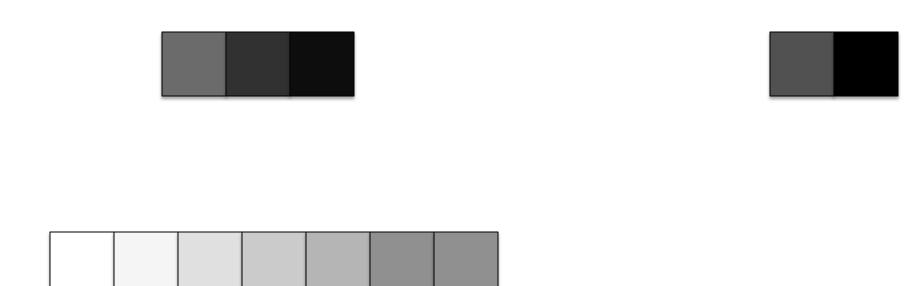


- Splitting the list: Easy! O(n)
- Two recursive calls: Easy!
- Merging two sorted lists?
 - Lowest element in merged list is the lowest element of one of the lists
 - Pick smaller of the first elements of the two lists,
 remove it, and add it to the final list.

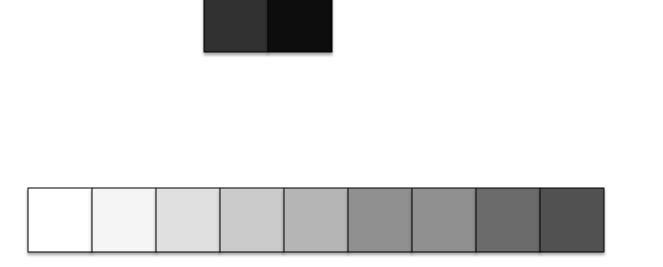












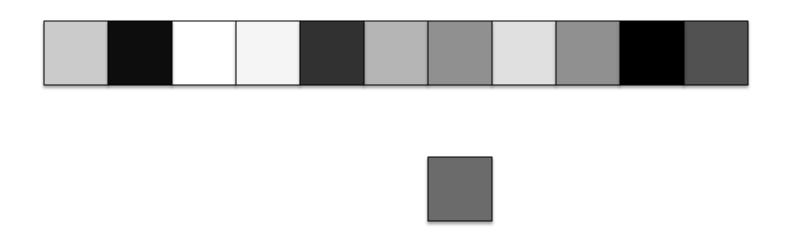


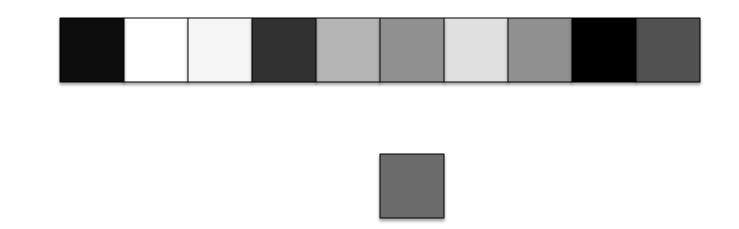
- Splitting the list: Easy! O(n)
- Two recursive calls: Easy!
- Merging two sorted lists?
 - Pick smaller of the first elements of the two lists,
 remove it, and add it to the final list.
 - Every iteration, length of final list grows
 - Can only iterate O(n) times
 - O(n) for merge

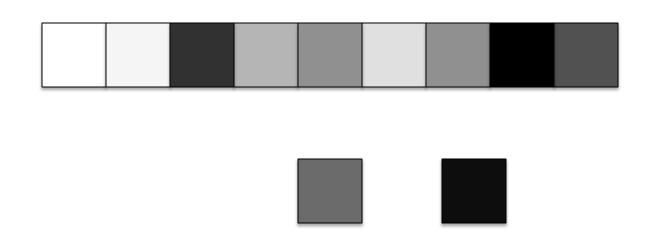
- Running time: T(n) = 2 T(n/2) + O(n)
- Master Method:
 - -a = 2, b = 2, d = 1
 - $-a = b^d$, so $O(n^d \log n) = O(n \log n)$

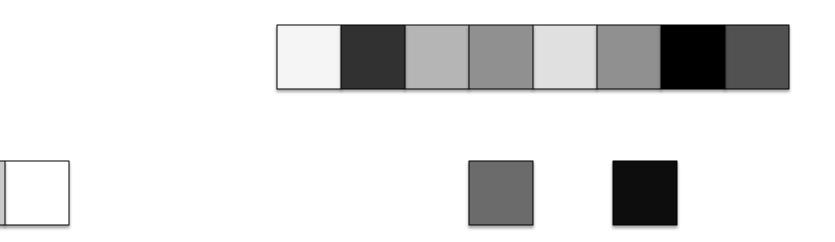
QuickSort

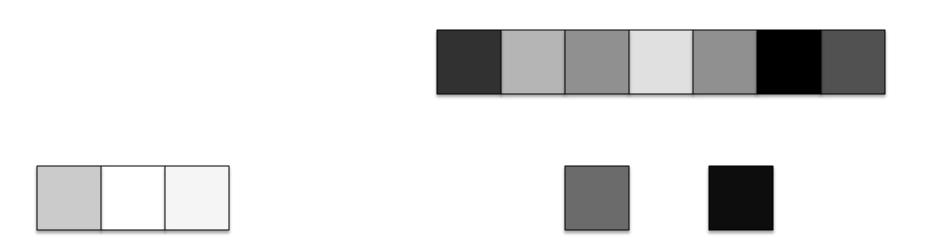
- What if instead of merging at end, we make sure all the elements in one list are less than all the elements in the other.
- Then we just concatenate the two lists, and are done
- To accomplish, take an element from the list, called the pivot, and make left list all elements less than it, right list all elements greater than it

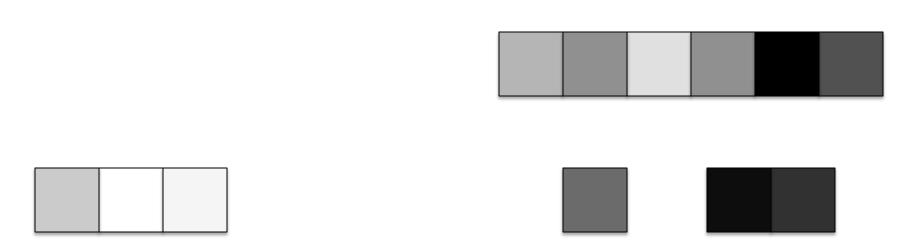


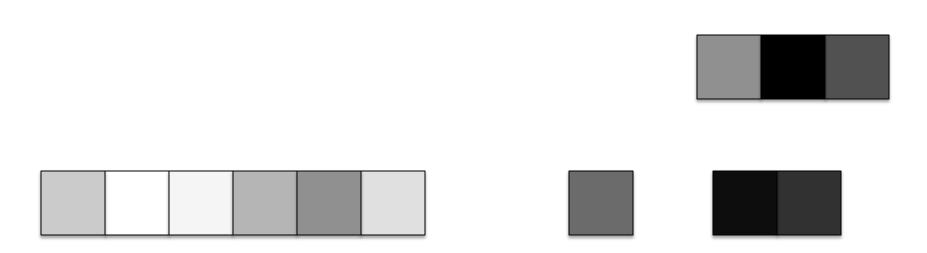


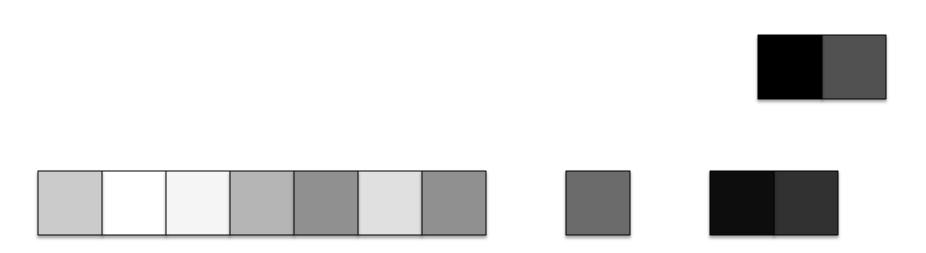


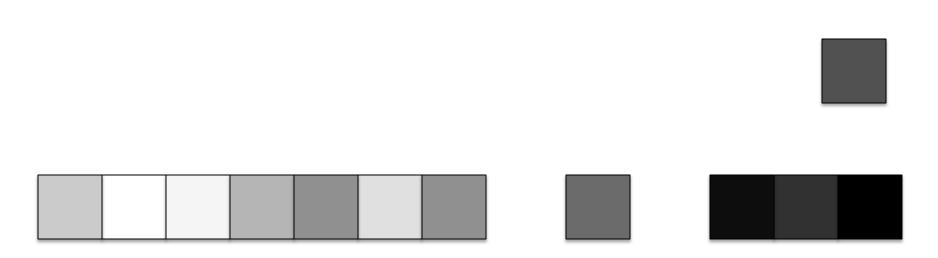












QuickSort Running Time

- O(n) work before collision to split lists
- Let p be the pivot, k the number of elements less than p
- One recursive call of size k, one of size n-1-k
- T(n) = T(k) + T(n-1-k) + O(n)

QuickSort Running Time

- Best case: k = n/2
- $T(n) = 2T(n/2) + O(n) \rightarrow T(n) = O(n \log n)$
- Worst case: k = 0 (i.e. elements are already in order)
- T(n) = T(n-1)+T(0)+O(n)=T(n-1)+O(n)
 T(n) = O(n²)

- What if input is in random order?
 - k is a random value between 0 and n-1
 - Expected running time?

$$T(n) \le O(n) + \frac{1}{n} \sum_{k=0}^{n-1} \left(T(k) + T(n-k-1) \right)$$

$$\le O(n) + \frac{2}{n} \sum_{k=0}^{n-1} T(k)$$

$$T(n) \le cn + \frac{2}{n} \sum_{k=0}^{n-1} T(k)$$

Claim: there is a constant d such that
 T(n) ≤ dn log n

• Proof: Assume $T(k) \le dk \log k$ for k < n

$$T(n) \le cn + \frac{2}{n} \sum_{k=0}^{n-1} \left(dk \log k \right)$$

$$= cn + \frac{2d}{n} \left(\sum_{k=0}^{\lceil (n-1)/2 \rceil} k \log k + \sum_{k=\lceil (n-1)/2 \rceil+1}^{n-1} k \log k \right)$$

$$\le cn + \frac{2d}{n} \left(\log \frac{n}{2} \left(\sum_{k=0}^{\lceil (n-1)/2 \rceil} k \right) + \log n \left(\sum_{k=\lceil (n-1)/2 \rceil+1}^{n-1} k \right) \right)$$

$$T(n) \le cn + \frac{2d}{n} \left(\log \frac{n}{2} \left(\sum_{k=0}^{\lceil (n-1)/2 \rceil} k \right) + \log n \left(\sum_{k=\lceil (n-1)/2 \rceil+1}^{n-1} k \right) \right)$$

$$= cn + \frac{2d}{n} \left(\log n \left(\sum_{k=0}^{n-1} k \right) - \left(\sum_{k=0}^{\lceil (n-1)/2 \rceil} k \right) \right)$$

$$= cn + \frac{2d}{n} \left(\frac{n(n-1)}{2} \log n - \frac{\left[(n-1)/2 \right] \left(\left[(n-1)/2 \right] - 1 \right)}{2} \right)$$

$$T(n) \le cn + \frac{2d}{n} \left(\frac{n(n-1)}{2} \log n - \frac{(n-1)/2((n-1)/2 - 1)}{2} \right)$$

$$= cn + d(n-1) \log n - \frac{d}{8} \left(n - \frac{1}{n} \right)$$

$$\le dn \log n - \left(\frac{d}{8} - c \right) n + d \left(\frac{1}{8} - \log n \right)$$

Thus, we can set d=8c, and the desired inequality holds for $\log n \ge 1/8$, which holds for $n \ge 2$

QuickSort Randomized

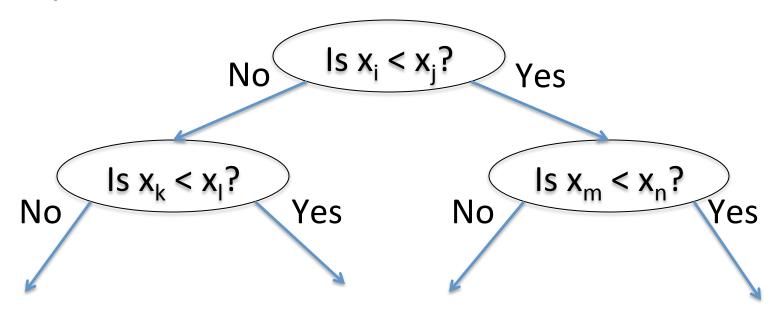
- What if we really want worst-case bounds?
- Instead of picking pivot to be the first element, pick pivot at random
- k, the number of elements below the pivot, is still a random integer form 0 to n-1
- Expected running time:

$$T(n) \le O(n) + \frac{1}{n} \sum_{k=0}^{n-1} (T(k) + T(n-k-1))$$

Comparison-Based Sorting

- Heap sort, Merge sort, and QuickSort all have running time O(n log n). Why?
- Theorem: Any sorting algorithm that only makes questions of the form "is x < y?" must make $\Omega(n \log n)$ comparisons.

 Any algorithm that only asks questions about the input of the form "is x < y?" can be represented as a tree



- Label leaves with permutations p of [1,...,n]
 - -[p(1), p(2), ..., p(n)]
 - Corresponds to ordering where $x_{p(1)} < x_{p(2)} < ... < x_{p(n)}$
- Permutation must be consistent with answers to questions
 - Let r_i and r_j be the integers such that $i = p(r_i)$ and $j = p(r_i)$
 - If $x_i < x_j$ was answered yes, then $r_i < r_j$

- All possible permutations must be present
 - What if permutation is missing, and we give algorithm an input with the corresponding ordering?
 - The algorithm will think we are in a different ordering, and produce the wrong output

- Number of permutations?
 - First pick p(1): n choices
 - Then pick p(2): n-1 choices
 - **—** ...
 - Pick p(n): 1 choice
 - Total number of choices: n!

- Number of permutations: n!
- Number of leaves: ≥ n!
- Depth of tree: ≥ log n!
- Number of comparisons in algorithm: ≥ log n!
- Need to asymptotically bound log n!

Bounding log n!

- log n! = O(n log n)
 log n! = log n + log (n-1) + ... + log 1
 < n log n
- Log $n! = \Omega(n \log n)$
 - $-\log n! = \log n + \log (n-1) + ... + \log 1$
 - $> \log n + \log (n-1) + ... + \log n/2$
 - $> (n/2) \log (n/2) = \Omega(n \log n)$

Comparison-Based Sorting

- Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons
- One of the very few non-trivial lower bounds that we know of
- What about linear sorting algorithms?
 - Not comparison-based

n!

 We can actually do better for bounding n! using Stirling's Approximation:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Finding the Median

- Finding the smallest value of a list is easy
 - Go through the list, keeping track of the smallest element. O(n)
- Finding the kth smallest value of a list, for constant k, is easy
 - Go through the list, keeping track of the k smallest elements. O(n) if k is constant
- What about k = n/2?
 - Sort, pick out middle element. O(n log n)
 - Is there any way to get O(n)?

Select

- Find the kth smallest element in a list
- Divide and conquer approach?
 - Pick a pivot p
 - Create two lists, I1 with all elements less than p,
 and I2 with all elements greater than p
 - If k is at most ||1|, then recursively call on |1
 - If k = ||1||+1, return p
 - Otherwise, call on 12 with k' = k |11|-1

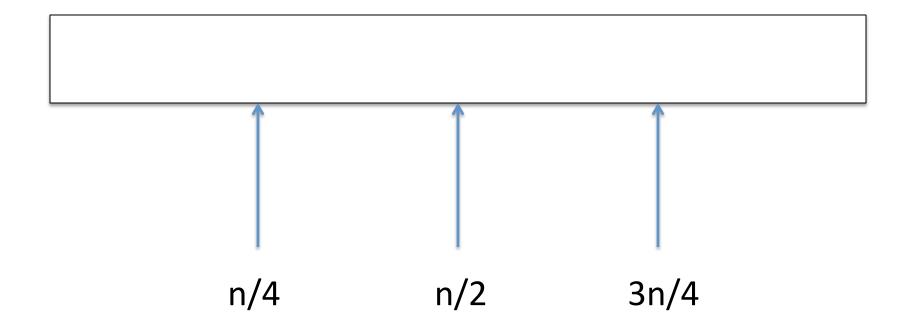
Select

- Running Time?
 - Best case: p happens to be the median
 - $T(n) = T(n/2) + O(n) \rightarrow T(n) = O(n)$
 - Worst case: p is the smallest or largest element
 - $T(n) = T(n-1) + O(n) \rightarrow T(n) = O(n^2)$

Select Expected Running Time

- If we choose pivot randomly, the number of elements smaller than it will be a random integer from 0 to n-1
- Can write recurrence for expected run time:
 - -T(n) = T(3n/4) + g O(n)
 - -g = expected number of of recursive calls until the list has size <math>3n/4

Select Expected Running Time



 How many splits until pivot between n/4 and 3n/4? g = 2

Select Expected Running Time

Worst Case Linear Time?

- How can we get a linear time worst case select?
- Idea: want to pick pivot close to the median
 - Can use select to pick good pivot

Median-of-Medians

- Group elements off arbitrarily into n/5 groups of 5
- Find median of each group
- Find and output median of medians

Median-of-Medians

- Finding median of 5 elements: O(1) since a fixed number of comparisons
- Finding medians of all n/5 groups: O(n)
- Finding median of n/5 medians: T(n/5)

Median-of-Medians

- How good is the median-of-medians?
 - The median of each group is larger than 2 elements
 - The median-of-medians is larger than (n/5)/2 = n/10 group medians, as well as the elements these medians are larger than
 - Median-of-medians is larger than 3n/10
 - Also smaller than 7n/10
 - Therefore, next recursive call has size at most 7n/10

Worst-case Linear Select

- Select(l,k) =
 - Arbitrarily group elements into groups of five
 - Construct I1, the list of medians of each group
 - Let p = Select(|1, ||1|/2)
 - Construct I2 and I3, the lists of elements smaller and greater than p
 - If $|12| \le k$, call Select(|2,k|)
 - |f| |2| = k+1, return p
 - Otherwise, call Select(I3,k-|I2|-1)

Worst-case Linear Select

Running Time:

- O(n) for grouping and constructing list of medians
- -T(n/5) for computing pivot
- O(n) for constructing I2 and I3
- At most T(7n/10) for recursive call to Select
- -T(n) = T(n/5) + T(7n/10) + O(n)

Akra-Bazzi Method

$$T(n) = \sum_{i} a_i T(n/b_i) + O(n^d)$$

- Let f be the solution to $\sum_{i} \frac{a_i}{b_i^f} = 1$
- Then:
 - $If f < d, T(n) = O(n^d)$
 - $If f > d, T(n) = O(n^f)$
 - $If f = d, T(n) = O(n^d log n)$

Worst-case Linear Select

• T(n) = T(n/5) + T(7n/10) + O(n)

$$-a_1 = a_2 = 1$$

$$-d = 1$$

$$-b_1 = 5, b_2 = 10/7$$

$$-Solve$$

$$1 = \sum_{i} \frac{a_i}{b_i^f} = \left(\frac{1}{5}\right)^f + \left(\frac{7}{10}\right)^f$$

- $f \approx 0.84$, do d > f
- Therefore, $T(n) = O(n^d) = O(n)$