CS 161: Design and Analysis of
Algorithms

Midterm

Wednesday, July 25™ in class 2:15 — 3:30
Covers material through today
No bluebooks needed

SCPD students:

— Can take exam on campus, let us know by Monday

— Otherwise, must take at scheduled time with exam
proctor

Divide & Conquer Il:
Sorting/Median Finding

Merge Sort

Quick Sort

Sorting Lower Bound
Median Finding

Merge Sort

e Want to sort a list of n elements

* Divide and conquer approach:
— Split list into two sublists of size n/2
— Recursively sort each sublist

— Construct sorted list by merging sorted sublists

Merge Sort

.

Merge Sort

am 8 om o

Merge Sort

_

Merge Sort

_

Merge Sort

e Splitting the list: Easy! O(n)
* Two recursive calls: Easy!

* Merging two sorted lists?

— Lowest element in merged list is the lowest
element of one of the lists

— Pick smaller of the first elements of the two lists,
remove it, and add it to the final list.

Merge Sort

Merge Sort

Merge Sort

Merge Sort

Merge Sort

Merge Sort

o |

Merge Sort

Merge Sort

o

Merge Sort

Merge Sort

Merge Sort

Merge Sort

m

Merge Sort

Merge Sort

.

Merge Sort

Merge Sort

=

Merge Sort

Merge Sort

- »

Merge Sort

Merge Sort

-

Merge Sort

Merge Sort

-

Merge Sort

Merge Sort

Merge Sort

e Splitting the list: Easy! O(n)
* Two recursive calls: Easy!

* Merging two sorted lists?

— Pick smaller of the first elements of the two lists,
remove it, and add it to the final list.

— Every iteration, length of final list grows
e Can only iterate O(n) times

— O(n) for merge

Merge Sort

* Running time: T(n) =2 T(n/2) + O(n)
 Master Method:

—a=2,b=2,d=1

—a=Db9 so0(nlog n) = O(n log n)

QuickSort

 What if instead of merging at end, we make
sure all the elements in one list are less than all
the elements in the other.

 Then we just concatenate the two lists, and are
done

 To accomplish, take an element from the list,
called the pivot, and make left list all elements
less than it, right list all elements greater than it

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

QuickSort

I B

QuickSort

Sl

QuickSort

o B N

QuickSort

o B

QuickSort

QuickSort

QuickSort Running Time

O(n) work before collision to split lists

Let p be the pivot, k the number of elements
less than p

One recursive call of size k, one of size n-1-k
T(n) = T(k) + T(n-1-k) + O(n)

QuickSort Running Time

* Best case: k=n/2
* T(n) =2T(n/2)+0O(n) =2 T(n) = O(n log n)

 Worst case: k=0 (i.e. elements are already in
order)

* T(n) =T(n-1)+T(0)+O(Nn)=T(n-1)+0O(n)
—T(n) =0(n?)

QuickSort Average Case

* What if inputis in random order?
— k is a random value between 0 and n-1
— Expected running time?

T(n)<=0(n)+ lS(T(k) +T(n-k- 1))

N2

2 n-1
<O0(n) + ;;T(k)

QuickSort Average Case

2n—1
T(n)< — M T(k
(n) C’”n,}; (k)

 Claim: there is a constant d such that
T(n) <dnlogn

QuickSort Average Case

* Proof: Assume T(k) < dk log k for k < n

n-1
T(n)<cn+ %E(a’k logk)
3o

oy ([(n-1)/2] el \
—cn+= klogk+ Y klogk
n \ k=0 k=[(n-1)/2]+1)

(

04 o (1021 [n)
<cn+—1|log— 2 k [+logn E k

n 2\ i3 \k[(n-Di2}+1

\

QuickSort Average Case

) a’/ (T2 - \
T'(nyscn+—|log— 2 k|[+logn 2 k
L \ 2 k=0 \k=[(n-D)/2]s1]
1 [(n-1)2]
=cn+ﬁ logn(z) E
n ~ =)

=Ccn+

2d(n(n—1)logn_[(n—l)/21([(n-1)/21-1))

n 2 2

QuickSort Average Case

T(n)=scn+

n 2 2

Zd(n(n—l)logn_ (n—l)/2((n—1)/2—1))
= cn+d(n—1)10gn—g(n—l)
n

< dnlogn—(g—c)n+d(é—logn)

Thus, we can set d=8c, and the desired inequality holds
for log n > 1/8, which holds for n > 2

QuickSort Randomized

What if we really want worst-case bounds?

Instead of picking pivot to be the first
element, pick pivot at random

k, the number of elements below the pivot, is
still a random integer form 0 to n-1

Expected running time:

T(n)=0(n)+ l’/S(T(k) +T(n-k- 1))

N2

Comparison-Based Sorting

 Heap sort, Merge sort, and QuickSort all have
running time O(n log n). Why?

* Theorem: Any sorting algorithm that only
makes questions of the form “is x < y?” must
make Q(n log n) comparisons.

Decision-Tree Model

* Any algorithm that only asks questions about
the input of the form “is x < y?” can be
represented as a tree

. P
No@ Yes

_/

s x, < X,? @
No Yes No Yes

Decision-Tree Model

* Label leaves with permutations p of [1,...,n]

— Corresponds to ordering where X, ;) < X,5) < ... <X

p(n)
e Permutation must be consistent with answers to
guestions
— Let r; and r; be the integers such thati=p(r;) and j =
p(r;)

— If x; < x, was answered yes, then r,<r,

Decision-Tree Model

* All possible permutations must be present

— What if permutation is missing, and we give
algorithm an input with the corresponding
ordering?

— The algorithm will think we are in a different
ordering, and produce the wrong output

Decision-Tree Model

* Number of permutations?
— First pick p(1): n choices
— Then pick p(2): n-1 choices
— Pick p(n): 1 choice
— Total number of choices: n!

Decision-Tree Model

Number of permutations: n!

Number of leaves: > n!

Depth of tree: > log n!

Number of comparisons in algorithm: > log n!

Need to asymptotically bound log n!

Bounding log n!

* logn!=0(nlogn)
—logn!=logn+log(n-1)+..+log1
<nlogn
* Logn!=Q(nlogn)
—logn!=logn+log(n-1)+..+log1l
>log n+log (n-1) + ... + log n/2
>(n/2) log (n/2) = Q(n log n)

Comparison-Based Sorting

* Any comparison-based sorting algorithm
requires Q(n log n) comparisons

* One of the very few non-trivial lower bounds
that we know of

 What about linear sorting algorithms?
— Not comparison-based

n!

 We can actually do better for bounding n!
using Stirling’s Approximation:

n!'=+2man (ﬁ)
e

Finding the Median

* Finding the smallest value of a list is easy
— Go through the list, keeping track of the smallest
element. O(n)
* Finding the kth smallest value of a list, for
constant k, is easy

— Go through the list, keeping track of the k smallest
elements. O(n) if k is constant

 What about k=n/27?
— Sort, pick out middle element. O(n log n)

— |s there any way to get O(n)?

Select

* Find the kth smallest elementin a list

* Divide and conquer approach?
— Pick a pivot p
— Create two lists, |1 with all elements less than p,
and |12 with all elements greater than p
— If k is at most |11], then recursively call on 11
—Ifk=|I1|+1, return p
— Otherwise, call on 12 with k" =k - [11]-1

Select

* Running Time?
— Best case: p happens to be the median
* T(n) =T(n/2) + O(n) =2 T(n) = O(n)
— Worst case: p is the smallest or largest element
* T(n) =T(n-1) + O(n) =2 T(n) = O(n?)

Select Expected Running Time

* |f we choose pivot randomly, the number of
elements smaller than it will be a random
integer from O to n-1

e Can write recurrence for expected run time:
—T(n) =T(3n/4) + g O(n)

— g = expected number of of recursive calls until the
list has size 3n/4

Select Expected Running Time

n/4 n/2 3n/4

* How many splits until pivot between n/4 and
3n/4? g=2

Select Expected Running Time

* T(n) =T(3n/4) + O(n)
—a=1b=4/3,d=1
—a< b9 soT(n) =0(n%) =0O(n)

Worst Case Linear Time?

* How can we get a linear time worst case select?

* |dea: want to pick pivot close to the median
— Can use select to pick good pivot

Median-of-Medians

* Group elements off arbitrarily into n/5 groups
of 5

* Find median of each group

* Find and output median of medians

Median-of-Medians

* Finding median of 5 elements: O(1) since a
fixed number of comparisons

* Finding medians of all n/5 groups: O(n)
* Finding median of n/5 medians: T(n/5)

Median-of-Medians

* How good is the median-of-medians?
— The median of each group is larger than 2 elements

— The median-of-medians is larger than (n/5)/2 = n/10
group medians, as well as the elements these
medians are larger than

— Median-of-medians is larger than 3n/10
— Also smaller than 7n/10
— Therefore, next recursive call has size at most 7n/10

Worst-case Linear Select

e Select(l,k) =
— Arbitrarily group elements into groups of five
— Construct 11, the list of medians of each group
— Let p = Select(I1,[11]/2)

— Construct 12 and I3, the lists of elements smaller
and greater than p

—If |12] <k, call Select(l2,k)
—If |12] = k+1, return p
— Otherwise, call Select(I3,k-]12]-1)

Worst-case Linear Select

* Running Time:
— O(n) for grouping and constructing list of medians
— T(n/5) for computing pivot
— O(n) for constructing 12 and 13
— At most T(7n/10) for recursive call to Select
—T(n) =T(n/5) + T(7n/10) + O(n)

Akra-Bazzi Method

T(n)=Y aT(n/b)+0(n’)

ai
* Let f be the solution to zb_f =1

* Then:
—Iff<d, T(n) = 0(n9)
—If f>d, T(n) = O(nf)
—Iff=d, T(n) = O(n9log n)

Worst-case Linear Select

* T(n)=T(n/5) + T(7n/10) + O(n)
—a;=a,=1
—d=1
—b,=5,b,=10/7

_ Solve 1=Ei=(;)f+(l)f
~p/ \5) (10

—1=0.84,dod>f
— Therefore, T(n) = O(n9) = O(n)

