
CS 161: Design and Analysis of 
Algorithms 



Greedy Algorithms 3: 
 Minimum Spanning Trees/Scheduling 

• Disjoint Sets, continued 
• Analysis of Kruskal’s Algorithm 
• Interval Scheduling 



Disjoint Sets, Continued 

• Each set represented as directed tree 
• Set identified by root of tree 
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Disjoint Sets, Continued 

• makeset(x) = {   O(1) 
– Set p(x) = x 
– Set rank(x) = 0 
} 

• find(x) = {   O(h) 
– Let r = x 
– While p(r) ≠ r, r = p(r) 
– Return r 
} 



Disjoint Sets, Continued 

• union(x,y) = {    O(h1 +  h2) 
– Let x’ = p(x), y’ = p(y) 
– If rank(x’) > rank(y’): 

• p(y’) = x’ 

– Else 
• p(x’) = y’ 
• If rank(x’) = rank(y’): rank(y’) = rank(y’) + 1 

 



Disjoint Sets, Continued 

• rank(x) < rank(p(x)) 
• Any root of rank k has at least 2k descendants 
• There are at most n/2k nodes of rank k 
• Maximum rank is at most log n 



Optimization: Path Compression 

• When we call find(x), we will traverse the 
ancestors of x until we find the root r 

• Regardless of union operations, r will always 
be an ancestor of x 

• Can shortcut path to root and set p(x) = r 



Optimization: Path Compression 

• find(x) = { 
– Let r = x 
– Let s be a stack 
– While p(r) ≠ r: 

• s.push(r) 
• R = p(r) 

– While s isn’t empty: p(s.pop()) = r 
– Return r 
} 

 



Optimization: Path Compression 

• find(x) = { 
– If x ≠ p(x), set p(x) = find(p(x)) 
– Return p(x) 
} 

 



Running Time? 

• Running time = depth of x in tree 
• Still O(h), might still be O(log n) 
• However, once we call find(x), subsequent 

calls to find(x) are constant time 
• Using amortized analysis, almost linear time 

on average  



Amortized Analysis 

• Consider any sequence of n calls to find (might 
be part of calls to union) 

• Running time bounded by number times we 
follow parent pointers 



Amortized analysis 

• Path compression does not affect ranks 
• If we update a parent pointer, the new parent 

must have higher rank than the old parent 
• If x has a parent, its rank will never be 

changed again. 
• Maximum rank: since n calls to find, largest 

set has at most n values, so max rank = log n 



Amortized Analysis 

• Break possible ranks into intervals {k+1,…,2k}: 
– Interval 0: {1} 
– Interval 1: {2} 
– Interval 2: {3,4} 
– Interval 3: {5,6,7,…,16} 
– Interval 4: {17,…,216 = 65536} 
– Interval 5: {65537,…,265536} 
– … 



Amortized Analysis 

• How many intervals needed? 
• Maximum rank = log n 
• In practice: n never larger than 265536, so log n 

never larger than 65536: only need 5 intervals 
• log*(k) = number of times apply log to k to get 

something at most 1 
• In theory: need log*(n) intervals 

 



Amortized Analysis 

• How many nodes in {k+1,…,2k}? 
– At most n/2i nodes of rank i, so sum from i=k+1 to 

i=2k 
 

• Number of times we update parent pointer, 
where old parent pointer in same range as x? 
– At most 2k for each node in {k+1,…,2k} 
– At most n updates for each range 
– At most n log*(n)  
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Amortized Analysis 

• When we call find(x), we repeatedly follow 
parent pointers 

• For all except the last pointer, we update the 
parent pointer 

• At most log*(n) of the nodes we visit have 
their parent pointers in the next interval 

• Total number of parent pointers followed: 
– Parent pointers not updated: n 
– Updates where parent in next level: n log*(n) 
– Updates where parent in same level: n log*(n) 

 



Amortized Analysis 

• Total number of parent pointers followed: 
n+2n log*(n)≤3n log*(n) = O(n log*(n)) 

• Time per call to find: O(log*(n)) amortized 
• Therefore, find and union take amortized 

O(log*(n)), essentially constant 



Kruskal’s Algorithm 

• Repeatedly add lightest edge that does not 
form a cycle 

• How to find lightest edge?  Sort them initially 
– Heap/self-balancing BST O(|E| log |E|) 
– If edge weights are small, can sort in O(|E|) 

• Check if adding causes a cycle? Keep track of 
separate components with Disjoint Sets 

 

 
 



Kruskal’s Algorithm 

• For all v, makeset(v) 
• Sort E by increasing weight 
• For all edges (u,v) in E in sorted order: 

– If find(u) ≠ find(v): 
• Add (u,v) to MST 
• union(u,v) 



Kruskal’s Algorithm 

• Running Time? 
• Time for sort = O(|E| log |E|) or O(|E|) 
• Call makeset |V| times, find twice per edge, 

union at most once per edge 
• |E| ≥ |V|-1, so |V| = O(|E|) 
• Time after sorting: O(|E| log*|E|)  



Kruskal’s Algorithm 

• In general, sorting is bottleneck 
• If we can sort in linear time or are given edges 

in sorted order, O(|E| log*|E|) 
• Otherwise, O(|E|log |E|) 

– Same as Prim’s with binary heap 

 



More on log*(n) 

• Called iterated logarithm 
• Extremely slow growing 

– At most 5 for all values seem in practice 

• Not the slowest: 
– Inverse Ackermann function α(n) asymptotically 

slower 

• Arises occasionally in algorithmic analysis 
– Multiply n-bit integers in time O(n log n clog*n) 

 



Interval Scheduling 

• Suppose there are n jobs 
– Each job i must be worked on and completed in 

the specified time interval [s(i),f(i)] 
– Can only work on 1 job at a time 
– How do we maximize the number of jobs 

completed? 



Greedy Attempt 1: Shortest Intervals 

• Since we want the most intervals possible, 
might make sense to repeatedly pick the 
smallest interval that does not cause a conflict 



Greedy Attempt 2: Earliest Start 

• Since getting started sooner means we can 
work for longer, might make sense to pick the 
interval with the earliest start time 



Greedy Attempt 3: Fewest Conflict 

• Whenever we do one job, we are preventing 
ourselves from completing any job that 
overlaps.  Therefore, it might make sense to 
pick the job with the fewest conflicts 



Greedy Attempt 4: Earliest Finish 

• If we finish the first task as early as possible, 
will have the most time left for other tasks. 

• Turns out to be correct greedy algorithm 



Greedy Attempt 4: Earliest Finish 

• Sort tasks by their end time f(i) 
• Let t = 0 
• For each task i in increasing order of f(i) 

– If t > s(i), discard i 
– Otherwise, do task i, and set t = f(i) 



Greedy Attempt 4: Earliest Finish 

• Running time? 
– Sort in O(n log n) 
– O(1) extra time per task 
– Total time: O(n log n) in general 
– O(n) if we can sort in linear time 



Greedy Attempt 4: Earliest Finish 

• Optimal? 
– Let i1, … ik be the intervals used in the greedy 

solution G, in order of time completed (f(ir)<f(ir+1)) 
– Let j1, … jm be intervals in some optimal solution 

O, in order of time completed 
• Clearly m ≤ k.  We want to show that m = k 

– Claim: For each r = 0, …, k, there is an optimal 
solution Or where the first r intervals are i1, … ir  



Greedy Attempt 4: Earliest Finish 

• Claim: For each r = 0, …, k, there is an optimal 
solution Or where the first r intervals are i1, … ir  
– Proof: Clearly true for r = 0 
– Given Or-1, construct Or by changing interval jr 
– Interval jr-1 = ir-1, so ends at time f(ir-1) 
– Interval ir has earliest end point among intervals 

starting after f(ir-1) 
– Can safely replace jr = ir, arriving at Or  



Greedy Attempt 4: Earliest Finish 

• Claim: Greedy is optimal 
– Proof: Consider optimal solution Ok 
– First k i1, … ik, so fist k intervals are greedy solution 
– If Greedy not optimal, must be jk+1 occurring after ik 
– But then after picking ik, greedy would have had at 

least 1 interval to choose from, would not have 
terminated 



Related Problem: Interval Partitioning 

• Have n tasks, want to complete them all using 
as few people as possible 

• Formally: have n intervals, want to partition 
them into k subsets so that the intervals in 
each subset do not overlap, and k is 
minimized 



Interval Partitioning 

• How many partitions needed? 



Interval Partitioning 

• How many partitions needed? 
 
 
 
 
 
 

• Clearly at least 4 



Interval Partitioning 

• Let S be the set of tasks 
• Let depth(S) be the maximum number of tasks 

occurring simultaneously 
• Clearly, the number of partitions must be at 

least depth(S) 
• Can we find a partition into depth(S) sets? 



Interval Partitioning 

• Idea: take earliest interval i (by start time or 
finish time?), and add to any set that has no 
intervals overlapping i 

• By finish time? 
 



Interval Partitioning 

• Idea: take earliest interval i (by start time or 
finish time?), and add to any set that has no 
intervals overlapping i 

• By finish time? 
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Interval Partitioning 

• Idea: take earliest interval i (by start time or 
finish time?), and add to any set that has no 
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Interval Partitioning 

• Idea: take earliest interval i (by start time or 
finish time?), and add to any set that has no 
intervals overlapping i 

• By finish time? 
 1 

2 

1 



Interval Partitioning 

• Idea: take earliest interval i (by start time or 
finish time?), and add to any set that has no 
intervals overlapping i 

• By finish time? 
 
 
 
 

• Greedy gives 3, but depth = 2 
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Interval Partitioning 

• Take earliest interval i (by start time), and add 
to any set that has no intervals overlapping i 

• Suppose number of sets is > depth 
– When we go to add interval i, all depth(S) sets 

have an interval overlapping i 
– i must have higher s(i) than any of these intervals 
– But then the number of intervals overlapping at 

time s(i) is depth(S) + 1, a contradiction 
 



Scheduling to Minimize Lateness 

• Back to having one person to work on tasks 
• Have n jobs, each with processing time ti, and 

deadline di  
• Devise a schedule to complete the jobs, 

minimizing maximum lateness: 
–  Define the lateness Li of task i as max(0, fi – di) 
– Want to minimize max of lateness values 



Minimizing Lateness 

• How should we prioritize tasks? 
– By processing time? 



Minimizing Lateness 

• How should we prioritize tasks? 
– By processing time? 

• Greedy: 

Late! 



Minimizing Lateness 

• How should we prioritize tasks? 
– By processing time? 

• Optimal: 

All intervals on time 



Minimizing Lateness 

• How should we prioritize tasks? 
– By slack time di – ti? 

slack 



Minimizing Lateness 

• How should we prioritize tasks? 
– By slack time di – ti? 



Minimizing Lateness 

• How should we prioritize tasks? 
– By slack time di – ti? 

• Greedy: Large lateness 



Minimizing Lateness 

• How should we prioritize tasks? 
– By slack time di – ti? 

• Optimal: 

Small lateness 



Minimizing Lateness 

• How should we prioritize tasks? 
– By deadline? 
– Seems to simplistic, but it turns out to be the right 

approach 



Minimizing Lateness 

• Greedy algorithm: schedule tasks with earlier 
deadlines earlier 

• Running time: time to sort deadlines 



Minimizing Lateness 

• Claim 1: There is an optimal schedule with no 
gaps between tasks 



Minimizing Lateness 

• In any schedule, an inversion is a pair of tasks 
where the task with the later deadline is 
scheduled earlier. 

• Claim 2: All schedules with no gaps between 
tasks and no inversions have the same 
maximum lateness 



Minimizing Lateness 

• Proof: If two tasks have no inversions and no 
gaps, the only difference is in the order of 
tasks that have same deadlines 

• Consider one deadline d 
• All tasks with deadline d are scheduled after 

all tasks with earlier deadlines 
• Last task with deadline d ends at same time 

for both schedules 
• Maximum lateness for tasks with deadline d is 

the same in both schedules 



Minimizing Lateness 

• Claim 3: There is an optimal schedule with no 
inversions and no gaps. 
– By Claim 1, there is an optimal solution O with no 

gaps 
– Idea: repeatedly remove inversions, showing that 

the maximum lateness can only decrease. 



Minimizing Lateness 

• Fact 1: If O has an inversion, there is a pair of 
jobs i and j such that j is scheduled 
immediately after i, and dj < di 

• Proof: Start with any inversion (a,b). 
– Starting from a, and continuing in the scheduled 

order, there must see an interval where the 
deadline decreases for the first time.  This interval 
and the previous are j and i 
 



Minimizing Lateness 

• Fact 2: After swapping i and j, O has one less 
inversion 



Minimizing Lateness 

• Fact 3: After swapping i and j, O’s maximum 
lateness did not increase. 

• Proof: Before swap 
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Minimizing Lateness 

• Fact 3: After swapping i and j, O’s maximum 
lateness did not increase. 

• Proof: After swap 

dj di 

i j 

Lj 

Li’ 

Li’ < Lj  

Lj’ 

Lj’ < Lj  



Minimizing Lateness 

• Fact 3: After swapping i and j, O’s maximum 
lateness did not increase 

• Proof: After swapping i and j, the maximum 
lateness between just i and j did not increase 
– Lateness of other intervals did not change 
– Therefore, maximum over all intervals did not 

increase 



Maximizing Lateness 

• Since greedy has no inversions or gaps, it must 
have the same maximum lateness as any 
other solution with no inversions or gaps, 
including the optimal solution guaranteed by 
claim 3. 

• Therefore, greedy is optimal 
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