
CS 161: Design and Analysis of
Algorithms

Greedy Algorithms 3:
 Minimum Spanning Trees/Scheduling

• Disjoint Sets, continued
• Analysis of Kruskal’s Algorithm
• Interval Scheduling

Disjoint Sets, Continued

• Each set represented as directed tree
• Set identified by root of tree

B

A

C L G

E J F I M

O

K H

N D

Disjoint Sets, Continued

• makeset(x) = { O(1)
– Set p(x) = x
– Set rank(x) = 0
}

• find(x) = { O(h)
– Let r = x
– While p(r) ≠ r, r = p(r)
– Return r
}

Disjoint Sets, Continued

• union(x,y) = { O(h1 + h2)
– Let x’ = p(x), y’ = p(y)
– If rank(x’) > rank(y’):

• p(y’) = x’

– Else
• p(x’) = y’
• If rank(x’) = rank(y’): rank(y’) = rank(y’) + 1

Disjoint Sets, Continued

• rank(x) < rank(p(x))
• Any root of rank k has at least 2k descendants
• There are at most n/2k nodes of rank k
• Maximum rank is at most log n

Optimization: Path Compression

• When we call find(x), we will traverse the
ancestors of x until we find the root r

• Regardless of union operations, r will always
be an ancestor of x

• Can shortcut path to root and set p(x) = r

Optimization: Path Compression

• find(x) = {
– Let r = x
– Let s be a stack
– While p(r) ≠ r:

• s.push(r)
• R = p(r)

– While s isn’t empty: p(s.pop()) = r
– Return r
}

Optimization: Path Compression

• find(x) = {
– If x ≠ p(x), set p(x) = find(p(x))
– Return p(x)
}

Running Time?

• Running time = depth of x in tree
• Still O(h), might still be O(log n)
• However, once we call find(x), subsequent

calls to find(x) are constant time
• Using amortized analysis, almost linear time

on average

Amortized Analysis

• Consider any sequence of n calls to find (might
be part of calls to union)

• Running time bounded by number times we
follow parent pointers

Amortized analysis

• Path compression does not affect ranks
• If we update a parent pointer, the new parent

must have higher rank than the old parent
• If x has a parent, its rank will never be

changed again.
• Maximum rank: since n calls to find, largest

set has at most n values, so max rank = log n

Amortized Analysis

• Break possible ranks into intervals {k+1,…,2k}:
– Interval 0: {1}
– Interval 1: {2}
– Interval 2: {3,4}
– Interval 3: {5,6,7,…,16}
– Interval 4: {17,…,216 = 65536}
– Interval 5: {65537,…,265536}
– …

Amortized Analysis

• How many intervals needed?
• Maximum rank = log n
• In practice: n never larger than 265536, so log n

never larger than 65536: only need 5 intervals
• log*(k) = number of times apply log to k to get

something at most 1
• In theory: need log*(n) intervals

Amortized Analysis

• How many nodes in {k+1,…,2k}?
– At most n/2i nodes of rank i, so sum from i=k+1 to

i=2k

• Number of times we update parent pointer,
where old parent pointer in same range as x?
– At most 2k for each node in {k+1,…,2k}
– At most n updates for each range
– At most n log*(n)

k
j

jk
ki

i
ki

i
nnnnk

22
1

222 11

2

1
==< ∑∑∑

∞

=

∞

+=+=

Amortized Analysis

• When we call find(x), we repeatedly follow
parent pointers

• For all except the last pointer, we update the
parent pointer

• At most log*(n) of the nodes we visit have
their parent pointers in the next interval

• Total number of parent pointers followed:
– Parent pointers not updated: n
– Updates where parent in next level: n log*(n)
– Updates where parent in same level: n log*(n)

Amortized Analysis

• Total number of parent pointers followed:
n+2n log*(n)≤3n log*(n) = O(n log*(n))

• Time per call to find: O(log*(n)) amortized
• Therefore, find and union take amortized

O(log*(n)), essentially constant

Kruskal’s Algorithm

• Repeatedly add lightest edge that does not
form a cycle

• How to find lightest edge? Sort them initially
– Heap/self-balancing BST O(|E| log |E|)
– If edge weights are small, can sort in O(|E|)

• Check if adding causes a cycle? Keep track of
separate components with Disjoint Sets

Kruskal’s Algorithm

• For all v, makeset(v)
• Sort E by increasing weight
• For all edges (u,v) in E in sorted order:

– If find(u) ≠ find(v):
• Add (u,v) to MST
• union(u,v)

Kruskal’s Algorithm

• Running Time?
• Time for sort = O(|E| log |E|) or O(|E|)
• Call makeset |V| times, find twice per edge,

union at most once per edge
• |E| ≥ |V|-1, so |V| = O(|E|)
• Time after sorting: O(|E| log*|E|)

Kruskal’s Algorithm

• In general, sorting is bottleneck
• If we can sort in linear time or are given edges

in sorted order, O(|E| log*|E|)
• Otherwise, O(|E|log |E|)

– Same as Prim’s with binary heap

More on log*(n)

• Called iterated logarithm
• Extremely slow growing

– At most 5 for all values seem in practice

• Not the slowest:
– Inverse Ackermann function α(n) asymptotically

slower

• Arises occasionally in algorithmic analysis
– Multiply n-bit integers in time O(n log n clog*n)

Interval Scheduling

• Suppose there are n jobs
– Each job i must be worked on and completed in

the specified time interval [s(i),f(i)]
– Can only work on 1 job at a time
– How do we maximize the number of jobs

completed?

Greedy Attempt 1: Shortest Intervals

• Since we want the most intervals possible,
might make sense to repeatedly pick the
smallest interval that does not cause a conflict

Greedy Attempt 2: Earliest Start

• Since getting started sooner means we can
work for longer, might make sense to pick the
interval with the earliest start time

Greedy Attempt 3: Fewest Conflict

• Whenever we do one job, we are preventing
ourselves from completing any job that
overlaps. Therefore, it might make sense to
pick the job with the fewest conflicts

Greedy Attempt 4: Earliest Finish

• If we finish the first task as early as possible,
will have the most time left for other tasks.

• Turns out to be correct greedy algorithm

Greedy Attempt 4: Earliest Finish

• Sort tasks by their end time f(i)
• Let t = 0
• For each task i in increasing order of f(i)

– If t > s(i), discard i
– Otherwise, do task i, and set t = f(i)

Greedy Attempt 4: Earliest Finish

• Running time?
– Sort in O(n log n)
– O(1) extra time per task
– Total time: O(n log n) in general
– O(n) if we can sort in linear time

Greedy Attempt 4: Earliest Finish

• Optimal?
– Let i1, … ik be the intervals used in the greedy

solution G, in order of time completed (f(ir)<f(ir+1))
– Let j1, … jm be intervals in some optimal solution

O, in order of time completed
• Clearly m ≤ k. We want to show that m = k

– Claim: For each r = 0, …, k, there is an optimal
solution Or where the first r intervals are i1, … ir

Greedy Attempt 4: Earliest Finish

• Claim: For each r = 0, …, k, there is an optimal
solution Or where the first r intervals are i1, … ir
– Proof: Clearly true for r = 0
– Given Or-1, construct Or by changing interval jr
– Interval jr-1 = ir-1, so ends at time f(ir-1)
– Interval ir has earliest end point among intervals

starting after f(ir-1)
– Can safely replace jr = ir, arriving at Or

Greedy Attempt 4: Earliest Finish

• Claim: Greedy is optimal
– Proof: Consider optimal solution Ok
– First k i1, … ik, so fist k intervals are greedy solution
– If Greedy not optimal, must be jk+1 occurring after ik
– But then after picking ik, greedy would have had at

least 1 interval to choose from, would not have
terminated

Related Problem: Interval Partitioning

• Have n tasks, want to complete them all using
as few people as possible

• Formally: have n intervals, want to partition
them into k subsets so that the intervals in
each subset do not overlap, and k is
minimized

Interval Partitioning

• How many partitions needed?

Interval Partitioning

• How many partitions needed?

• Clearly at least 4

Interval Partitioning

• Let S be the set of tasks
• Let depth(S) be the maximum number of tasks

occurring simultaneously
• Clearly, the number of partitions must be at

least depth(S)
• Can we find a partition into depth(S) sets?

Interval Partitioning

• Idea: take earliest interval i (by start time or
finish time?), and add to any set that has no
intervals overlapping i

• By finish time?

Interval Partitioning

• Idea: take earliest interval i (by start time or
finish time?), and add to any set that has no
intervals overlapping i

• By finish time?
 1

Interval Partitioning

• Idea: take earliest interval i (by start time or
finish time?), and add to any set that has no
intervals overlapping i

• By finish time?
 1

2

Interval Partitioning

• Idea: take earliest interval i (by start time or
finish time?), and add to any set that has no
intervals overlapping i

• By finish time?
 1

2

1

Interval Partitioning

• Idea: take earliest interval i (by start time or
finish time?), and add to any set that has no
intervals overlapping i

• By finish time?

• Greedy gives 3, but depth = 2

1

2

1

3

Interval Partitioning

• Take earliest interval i (by start time), and add
to any set that has no intervals overlapping i

• Suppose number of sets is > depth
– When we go to add interval i, all depth(S) sets

have an interval overlapping i
– i must have higher s(i) than any of these intervals
– But then the number of intervals overlapping at

time s(i) is depth(S) + 1, a contradiction

Scheduling to Minimize Lateness

• Back to having one person to work on tasks
• Have n jobs, each with processing time ti, and

deadline di
• Devise a schedule to complete the jobs,

minimizing maximum lateness:
– Define the lateness Li of task i as max(0, fi – di)
– Want to minimize max of lateness values

Minimizing Lateness

• How should we prioritize tasks?
– By processing time?

Minimizing Lateness

• How should we prioritize tasks?
– By processing time?

• Greedy:

Late!

Minimizing Lateness

• How should we prioritize tasks?
– By processing time?

• Optimal:

All intervals on time

Minimizing Lateness

• How should we prioritize tasks?
– By slack time di – ti?

slack

Minimizing Lateness

• How should we prioritize tasks?
– By slack time di – ti?

Minimizing Lateness

• How should we prioritize tasks?
– By slack time di – ti?

• Greedy: Large lateness

Minimizing Lateness

• How should we prioritize tasks?
– By slack time di – ti?

• Optimal:

Small lateness

Minimizing Lateness

• How should we prioritize tasks?
– By deadline?
– Seems to simplistic, but it turns out to be the right

approach

Minimizing Lateness

• Greedy algorithm: schedule tasks with earlier
deadlines earlier

• Running time: time to sort deadlines

Minimizing Lateness

• Claim 1: There is an optimal schedule with no
gaps between tasks

Minimizing Lateness

• In any schedule, an inversion is a pair of tasks
where the task with the later deadline is
scheduled earlier.

• Claim 2: All schedules with no gaps between
tasks and no inversions have the same
maximum lateness

Minimizing Lateness

• Proof: If two tasks have no inversions and no
gaps, the only difference is in the order of
tasks that have same deadlines

• Consider one deadline d
• All tasks with deadline d are scheduled after

all tasks with earlier deadlines
• Last task with deadline d ends at same time

for both schedules
• Maximum lateness for tasks with deadline d is

the same in both schedules

Minimizing Lateness

• Claim 3: There is an optimal schedule with no
inversions and no gaps.
– By Claim 1, there is an optimal solution O with no

gaps
– Idea: repeatedly remove inversions, showing that

the maximum lateness can only decrease.

Minimizing Lateness

• Fact 1: If O has an inversion, there is a pair of
jobs i and j such that j is scheduled
immediately after i, and dj < di

• Proof: Start with any inversion (a,b).
– Starting from a, and continuing in the scheduled

order, there must see an interval where the
deadline decreases for the first time. This interval
and the previous are j and i

Minimizing Lateness

• Fact 2: After swapping i and j, O has one less
inversion

Minimizing Lateness

• Fact 3: After swapping i and j, O’s maximum
lateness did not increase.

• Proof: Before swap

dj di

i j

Lj

Li
Li < Lj

Minimizing Lateness

• Fact 3: After swapping i and j, O’s maximum
lateness did not increase.

• Proof: After swap

dj di

i j

Lj

Li’

Li’ < Lj

Lj’

Lj’ < Lj

Minimizing Lateness

• Fact 3: After swapping i and j, O’s maximum
lateness did not increase

• Proof: After swapping i and j, the maximum
lateness between just i and j did not increase
– Lateness of other intervals did not change
– Therefore, maximum over all intervals did not

increase

Maximizing Lateness

• Since greedy has no inversions or gaps, it must
have the same maximum lateness as any
other solution with no inversions or gaps,
including the optimal solution guaranteed by
claim 3.

• Therefore, greedy is optimal

	CS 161: Design and Analysis of Algorithms
	Greedy Algorithms 3:� Minimum Spanning Trees/Scheduling
	Disjoint Sets, Continued
	Disjoint Sets, Continued
	Disjoint Sets, Continued
	Disjoint Sets, Continued
	Optimization: Path Compression
	Optimization: Path Compression
	Optimization: Path Compression
	Running Time?
	Amortized Analysis
	Amortized analysis
	Amortized Analysis
	Amortized Analysis
	Amortized Analysis
	Amortized Analysis
	Amortized Analysis
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	More on log*(n)
	Interval Scheduling
	Greedy Attempt 1: Shortest Intervals
	Greedy Attempt 2: Earliest Start
	Greedy Attempt 3: Fewest Conflict
	Greedy Attempt 4: Earliest Finish
	Greedy Attempt 4: Earliest Finish
	Greedy Attempt 4: Earliest Finish
	Greedy Attempt 4: Earliest Finish
	Greedy Attempt 4: Earliest Finish
	Greedy Attempt 4: Earliest Finish
	Related Problem: Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Interval Partitioning
	Scheduling to Minimize Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Minimizing Lateness
	Maximizing Lateness

