
CS 161: Design and Analysis of
Algorithms

Graphs 2:
 Directed Connectivity

• Types of directed graphs
• Directed acyclic graphs
• Strongly connected components

Types of Directed Graphs

• Complete graph

Type of Directed Graphs

• Strongly Connected

B

C

A
E

F

D

Types of Directed Graphs

• Weakly Connected

B C

A

E

F

D

Types of Directed Graphs

• Directed Acyclic Graph (DAG)

A
B

D

E
F

C

Types of Graphs

• Rooted Tree

B

A

C

D

I

H

G

J

F

E

Directed Acyclic Graphs

• Examples:
– Computer science curriculum
– Family “trees”
– Any cause and effect relationships

Directed Acyclic Graphs

• Source: node with no incoming edges
• Sink: node with no outgoing edges
• Property: In every dag, there is at least one

source and one sink
– Proof: Pick any node. Repeatedly follow out

edges.
– If process never stops, must have cycle
– Therefore, eventually find sink

Topological Ordering

• Assign labels 1 ,2 , … to nodes such that all edges
(i,j) have i < j

• Any graph with a topological ordering is a dag
• What dags admit topological orderings?

Ordering a Dag

• Algorithm to compute topological ordering:
– Find a source node v, give it label 1
– Remove v from graph (along with its outgoing edges)
– Repeat with label 2, 3, … until no nodes left.

Ordering a Dag

• Algorithm to compute topological ordering:
– Find a source node v, give it label 1
– Remove v from graph (along with its outgoing edges)
– Repeat with label 2, 3, … until no nodes left.

• In a dag, there is always a v, so this algorithm
always runs successfully

• Whenever a node is removed, the only edges
removed go to unlabeled nodes
– Those nodes will end up having a higher label

• All edges (i,j) have i < j

Ordering a Dag

• How to find source node?
– Pick any node, repeatedly follow incoming edges until

we hit a sink

• Can easily modify algorithm to check if graph is a

dag:
– Pick any node, mark it as visited, and repeatedly follow

incoming edges until we hit a sink or a visited node

Running Time?

• Finding each source could take O(|V|) time.
• |V| nodes removed, so total time O(|V|2)
• Can we improve to O(|V|+|E|)?

– Depth first search!

DFS Revisited

• DFS(G) =
initialize()
visited(v) = false for all v
For all v,

If not visited(v):
 update()
 explore(G,v)

DFS Revisited

• Explore(G,u) =
visited(u) = true
previsit(u)
For each edge (u,v) where not visited(v):
 explore(v)
postvisit(u)

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

DFS Tree

• Rooted tree formed by only looking at the
edges followed

A

E

D C

B

F

Types of Edges

• Tree edges: in DFS tree
• Forward edges: point to descendent in tree
• Back edges: point to ancestor in tree
• Cross edges: point to cousin in tree

• A dag is a graph with no back edges!
• How do we determine edge types?

Types of Edges

A

B

D C

Tree

Forward Back

Cross

Previsit and Postvisit orderings

• initialize(): count = 0
• previsit(v): pre(v) = count; count++
• postvisit(v): post(v) = count; count++

Previsit and Postvisit orderings

• For each node v, there is an interval
 I(v) = [pre(v),post(v)]

– Represents time when v is on the stack

• Given an edge (u,v), what possible relationships are
there for the intervals I(u), I(v)?

Previsit and Postvisit orderings

• What type of edge is (u,v)?
– Tree edge/Forward ege: I(v) ⊂ I(u)
– Back edge: I(u) ⊂ I(v)
– Cross edge: I(u) and I(v) are disjoint, I(v) before I(u)

• Last in, First out behavior guarantees that these
are the only possibilities

• Can tell if graph is dag by looking at intervals

In a dag

• No back edges
• For edge (u,v):

– Tree edge/Forward ege: I(v) ⊂ I(u)
– Cross edge: I(u) and I(v) are disjoint, I(v) before I(u)

• In either case, post(v) < post(u)
• Topological ordering: order by decreasing post

values
• How to sort by post values?

Topological Ordering

• Run DFS with pre/post orderings
• Create an array of length 2|V|
• For each node v, put that node at index post(v)
• Starting from end of array, read off nodes stored

in array
– Ignore empty indicies

Run Time

• DFS: O(|V|+|E|)
• Sorting: O(|V|)
• Total run time: O(|V|+|E|)

– Linear!

Decomposition of Directed Graphs

• In undirected, used equivalence relation
“connected” = a path from u to v.

• In directed, “connected” not an equivalence
relation
– u connected to v ≠ v connected to u

• Strongly connected: a path from u to v and a
path from v to u

Strongly Connected Components

• Strongly connected induces equivalence class:
strongly connected components (SCCs)

A

E

B

F

C D

G

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

B

F

C D

G

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

B

F

C D

G

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

B

F

C D

G

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

BF

C D

G

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

BF
CDG

H

I

L
K

J

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

A

E

BF
CDG

HIJKL

Strongly Connected Components

• What happens if we shrink each SCC into a
single node?

• We get a dag!

A

E

BF
CDG

HIJKL

Strongly Connected Components

• Fact: Every graph is a dag of its strongly
connected components

• Types of SCCs:
– Source SCC: SCC is a source in the resulting dag
– Sink SCC

• How do we find SCCs and construct this dag?
• Answer: DFS

Strongly Connected Components

• Recall: in dag, for edge (u,v), u must have
higher post order

• Theorem: If C and C’ are two SCCs and there is
an edge from C to C’, then the highest post
number in C is larger than highest post
number in C’

Proof

• If DFS visits C’ before C, it will get stuck visiting
C’, and C will get visited on a later call to
explore, resulting in a higher post number

• If DFS visits C before C’, all of C and C’ will be
visited before explore gets stuck, so the first
node in C will have higher post order than any
in C’

Corollary

• Node with highest post number must lie in
source SCC

Strongly Connected Components

• If we know the SCCs, we can order them by
decreasing highest post number

• How do we find SCCs?
– If we have a node u in a sink SCC, run explore on u.
– Nodes visited will be exactly the sink SCC
– Remove this SCC from graph, and repeat

Strongly Connected Components

• We know how to find source SCCs, need sink
SCCs.

• Reverse graph: GR is the graph obtained by
reversing every edge in G.

• If we run DFS on GR, highest post number will
be in a sink SCC

Strongly Connected Components

• Algorithm:
– Run DFS on GR, keeping track of post numbers
– Run DFS on G in order of decreasing post numbers

• Keep track of ccnum (will be label for SCC)
• Whenever we look at an edge to a visited node, see

what SCC it goes to, and add edge in the dag

Strongly Connected Components

B

E

G

C

D

H

A

F

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,] [8,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,] [8,] [9,]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,] [8,] [9,10]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,] [8,11] [9,10]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,]

[7,12] [8,11] [9,10]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,]

[4,5]

[6,13]

[7,12] [8,11] [9,10]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,]

[3,14]

[4,5]

[6,13]

[7,12] [8,11] [9,10]

Strongly Connected Components
• DFS on GR

B

E

G

C

D

H

A

F

[0,1] [2,15]

[3,14]

[4,5]

[6,13]

[7,12] [8,11] [9,10]

Strongly Connected Components
• DFS on GR

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

[0,1] [2,15]

[3,14]

[4,5]

[6,13]

[7,12] [8,11] [9,10]

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

BCDEFG
1

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

BCDEFG
1

2

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

BCDEFG
1

2
H

2

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

BCDEFG
1

2
H

2

3

Strongly Connected Components
• DFS on G

• Order: BDEFGHCA

B

E

G

C

D

H

A

F

1 1

1 1

1 1

BCDEFG
1

2
H

2

3

A
3

Running Time

• O(|V|+|E|) each for two runs of DFS
• O(|V|+|E|) overall

	CS 161: Design and Analysis of Algorithms
	Graphs 2:� Directed Connectivity
	Types of Directed Graphs
	Type of Directed Graphs
	Types of Directed Graphs
	Types of Directed Graphs
	Types of Graphs
	Directed Acyclic Graphs
	Directed Acyclic Graphs
	Topological Ordering
	Ordering a Dag
	Ordering a Dag
	Ordering a Dag
	Running Time?
	DFS Revisited
	DFS Revisited
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	DFS Tree
	Types of Edges
	Types of Edges
	Previsit and Postvisit orderings
	Previsit and Postvisit orderings
	Previsit and Postvisit orderings
	In a dag
	Topological Ordering
	Run Time
	Decomposition of Directed Graphs
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Proof
	Corollary
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Strongly Connected Components
	Running Time

