
CS 161: Design and Analysis of 
Algorithms 



Graphs 2: 
 Directed Connectivity 

• Types of directed graphs 
• Directed acyclic graphs 
• Strongly connected components 



Types of Directed Graphs 

• Complete graph 
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Types of Directed Graphs 

• Directed Acyclic Graph (DAG) 
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Types of Graphs 
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Directed Acyclic Graphs 

• Examples: 
– Computer science curriculum 
– Family “trees” 
– Any cause and effect relationships 



Directed Acyclic Graphs 

• Source: node with no incoming edges 
• Sink: node with no outgoing edges 
• Property: In every dag, there is at least one 

source and one sink 
– Proof: Pick any node.  Repeatedly follow out 

edges.  
– If process never stops, must have cycle 
– Therefore, eventually find sink 



Topological Ordering 

• Assign labels 1 ,2 , … to nodes such that all edges 
(i,j) have i < j  
 
 
 
 
 

• Any graph with a topological ordering is a dag 
• What dags admit topological orderings? 



Ordering a Dag 

• Algorithm to compute topological ordering: 
– Find a source node v, give it label 1 
– Remove v from graph (along with its outgoing edges) 
– Repeat with label 2, 3, … until no nodes left. 



Ordering a Dag 

• Algorithm to compute topological ordering: 
– Find a source node v, give it label 1 
– Remove v from graph (along with its outgoing edges) 
– Repeat with label 2, 3, … until no nodes left. 

• In a dag, there is always a v, so this algorithm 
always runs successfully 

• Whenever a node is removed, the only edges 
removed go to unlabeled nodes 
– Those nodes will end up having a higher label 

• All edges (i,j) have i < j 



Ordering a Dag 

• How to find source node? 
– Pick any node, repeatedly follow incoming edges until 

we hit a sink 

 
• Can easily modify algorithm to check if graph is a 

dag: 
– Pick any node, mark it as visited, and repeatedly follow 

incoming edges until we hit a sink or a visited node 
 



Running Time? 

• Finding each source could take O(|V|) time. 
• |V| nodes removed, so total time O(|V|2) 
• Can we improve to O(|V|+|E|)? 

– Depth first search! 

 



DFS Revisited 

• DFS(G) =  
initialize() 
visited(v) = false for all v 
For all v, 

If not visited(v): 
 update() 
 explore(G,v) 



DFS Revisited 

• Explore(G,u) =  
visited(u) = true 
previsit(u) 
For each edge (u,v) where not visited(v): 
 explore(v) 
postvisit(u) 



DFS Tree 

• Rooted tree formed by only looking at the 
edges followed 
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Types of Edges 

• Tree edges: in DFS tree 
• Forward edges: point to descendent in tree 
• Back edges: point to ancestor in tree 
• Cross edges: point to cousin in tree 

 
• A dag is a graph with no back edges! 
• How do we determine edge types? 
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Previsit and Postvisit orderings 

• initialize(): count = 0 
• previsit(v): pre(v) = count; count++ 
• postvisit(v): post(v) = count; count++ 



Previsit and Postvisit orderings 

• For each node v, there is an interval  
    I(v) = [pre(v),post(v)] 

– Represents time when v is on the stack 

• Given an edge (u,v), what possible relationships are 
there for the intervals I(u), I(v)? 



Previsit and Postvisit orderings 

• What type of edge is (u,v)? 
– Tree edge/Forward ege: I(v) ⊂ I(u) 
– Back edge: I(u) ⊂ I(v) 
– Cross edge: I(u) and I(v) are disjoint, I(v) before I(u) 

• Last in, First out behavior guarantees that these 
are the only possibilities 

• Can tell if graph is dag by looking at intervals 



In a dag 

• No back edges 
• For edge (u,v): 

– Tree edge/Forward ege: I(v) ⊂ I(u) 
– Cross edge: I(u) and I(v) are disjoint, I(v) before I(u) 

• In either case, post(v) < post(u) 
• Topological ordering: order by decreasing post 

values 
• How to sort by post values? 



Topological Ordering 

• Run DFS with pre/post orderings 
• Create an array of length 2|V| 
• For each node v, put that node at index post(v) 
• Starting from end of array, read off nodes stored 

in array 
– Ignore empty indicies 



Run Time 

• DFS: O(|V|+|E|) 
• Sorting: O(|V|) 
• Total run time: O(|V|+|E|) 

– Linear! 



Decomposition of Directed Graphs 

• In undirected, used equivalence relation 
“connected” = a path from u to v. 

• In directed, “connected” not an equivalence 
relation 
– u connected to v ≠ v connected to u 

• Strongly connected: a path from u to v and a 
path from v to u 

 



Strongly Connected Components 

• Strongly connected induces equivalence class: 
strongly connected components (SCCs) 
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Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 

A 

E 

B 

F 

C D 

G 

H 

I 

L 
K 

J 



Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 

A 

E 

B 

F 

C D 

G 

H 

I 

L 
K 

J 



Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 

A 

E 

B 

F 

C D 

G 

H 

I 

L 
K 

J 



Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 

A 

E 

BF 

C D 

G 

H 

I 

L 
K 

J 



Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 

A 

E 

BF 
CDG 

H 

I 

L 
K 

J 



Strongly Connected Components 
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Strongly Connected Components 

• What happens if we shrink each SCC into a 
single node? 
 
 
 
 
 
 

• We get a dag! 
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Strongly Connected Components 

• Fact: Every graph is a dag of its strongly 
connected components 

• Types of SCCs: 
– Source SCC: SCC is a source in the resulting dag 
– Sink SCC 

• How do we find SCCs and construct this dag? 
• Answer: DFS 



Strongly Connected Components 

• Recall: in dag, for edge (u,v), u must have 
higher post order 

• Theorem: If C and C’ are two SCCs and there is 
an edge from C to C’, then the highest post 
number in C is larger than highest post 
number in C’ 



Proof 

• If DFS visits C’ before C, it will get stuck visiting 
C’, and C will get visited on a later call to 
explore, resulting in a higher post number 

• If DFS visits C before C’, all of C and C’ will be 
visited before explore gets stuck, so the first 
node in C will have higher post order than any 
in C’ 



Corollary 

• Node with highest post number must lie in 
source SCC 



Strongly Connected Components 

• If we know the SCCs, we can order them by 
decreasing highest post number 

• How do we find SCCs? 
– If we have a node u in a sink SCC, run explore on u. 
– Nodes visited will be exactly the sink SCC 
– Remove this SCC from graph, and repeat 



Strongly Connected Components 

• We know how to find source SCCs, need sink 
SCCs. 

• Reverse graph: GR is the graph obtained by 
reversing every edge in G. 

• If we run DFS on GR, highest post number will 
be in a sink SCC 
 



Strongly Connected Components 

• Algorithm: 
– Run DFS on GR, keeping track of post numbers 
– Run DFS on G in order of decreasing post numbers 

• Keep track of ccnum (will be label for SCC) 
• Whenever we look at an edge to a visited node, see 

what SCC it goes to, and add edge in the dag 



Strongly Connected Components 
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Strongly Connected Components 
• DFS on GR  
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Strongly Connected Components 
• DFS on GR  
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Strongly Connected Components 
• DFS on GR 
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Strongly Connected Components 
• DFS on G 
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Running Time 

• O(|V|+|E|) each for two runs of DFS 
• O(|V|+|E|) overall 
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