
CS 161 - Design and Analysis of Algorithms (Summer 2012) Homework 3
Stanford University Due: Friday, July 20, 2012

Problem 1 (10 Points). Sometimes, there are many shortest paths between nodes (i.e. multiple
paths that are at least as short as any other path). Show how to compute the number of shortest
paths from a specific node v to each other node. Your algorithm should have the same running time
as Dijkstra’s algorithm

Problem 2 (10 Points). Suppose that, in addition to weights on edges weight(u, v), we also have
weights on nodes weight(u), and the length of a path is the sum of the weights of the edges and
nodes on the path (including endpoints). We are now interested in computing the shortest path
between two nodes using this new notion of length.

(a) In a directed graph, show how to reduce this problem to the standard shortest path problem.
That is, show how to give new weights to edges weight′(u, v) such that a shortest path in the
standard shortest path problem using weights weight′(u, v) is the same as the shortest path
in the more general problem using weights weight(u, v) and weight(u). How are the lengths
of the path under the two measures related?

(a) Do the same for an undirected graph.

Problem 3 (0 Points). Removed

Problem 4 (10 Points). Consider the following graph:

(a) In what order does Prim’s algorithm add edges to the MST? Whenever there is a choice of
nodes, choose the one that comes alphabetically first. Whenever there is a choice of edges,
choose the one with the alphabetically first endpoint (if both share an alphabetically first
endpoint, use the alphabetical ordering on the other end point).

(b) In what order does Krustkal’s algorithm add edges to the MST? Use the same method for
breaking ties as above.
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Problem 5 (30 Points). The following statements may or may not be correct. In each case, either
prove it (if it is correct) or give a counter example (it it isn’t correct). Always assume the graph
G = (V, E) is undirected and connected. Do not assume that edge weights are distinct unless this is
specifically stated.

(a) If graph G has more than |V | − 1 edges, and there is a unique heaviest edge, then this edge
cannot be part of a minimum spanning tree.

(b) If G has a cycle with a unique heaviest edge e, then e cannot be part of any MST.

(c) Let e be any edge of minimum weight in G. Then e must be part of some MST.

(d) If the lightest edge in a graph is unique, then it must be part of every MST.

(e) If e is part of some MST of G, then it must be a lightest edge across some cut of G.

(f) If G has a cycle with a unique lightest edge e, then e must be part of every MST

(g) The shortest-path tree computed by Dijkstra’s algorithm is necessarily an MST.

(h) The shortest path between two nodes is necessarily part of some MST.

(i) Prim’s algorithm works correctly when there are negative edge weights

(j) (For any r ≥ 0, define an r-path to be a path whose edges all have weight < r). If G contains
an r-path from node s to t, then every MST of G must also contain an r-path from node s to
t.

Problem 6 (10 Points). In a spanning tree, a bottleneck is an edge with highest weight. A spanning
tree is a minimum bottleneck spanning tree, or MBST, if no other spanning tree of the graph has a
smaller bottleneck.

(a) Show that every minimum spanning tree is also a minimum bottleneck spanning tree.

(b) Is every minimum bottleneck spanning tree a minimum spanning tree? Prove or give a counter
example.

Problem 7 (10 Points). A small business — say, a photocopying service with a single large machine
— faces the following scheduling problem. Each morning, they get a set of jobs from customers.
They want to do the jobs on their single machine in an order that keeps their customers happiest.
Customer i’s job will take ti time to complete. Given a schedule (i.e. an ordering of the jobs), let
Ci denote the finishing time of job i. For example, if job j is the first to be done, we would have
Cj = tj , and if job j is done right after job i, we could have Cj = Ci + tj . Each customer also has a
given weight wi that represents his or her importance to the business. The happiness of customer i
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is expected to be dependent on the finishing time of i’s job. So the company decides that they want
to order the jobs to minimize the weighted sum of the completion times,

∑n
i=1 wiCi.

Design an efficient algorithm to solve this problem. That is, you are given a set of n jobs with a
processing time ti and a weight wi for each job. You want to order the jobs so as to minimize the
weighted sum of completion times,

∑n
i=1 wiCi.

Total points: 80
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