
CS 161 - Design and Analysis of Algorithms (Summer 2012) Homework 1
Stanford University Due: Friday, July 6, 2012 at 2:15PM

Problem 1 (15 Points). Order the following functions by big Oh. You should list the functions by
increasing Big Oh, showing which functions are Big Theta of each other. For each two adjacent
functions in your list, please provide a justification for the ordering (i.e. show that fi(n) ∈ O(fj(n)),
and why fi(n) is or isn’t Θ(fj(n))).

f1(n) = 100
√

n f2(n) = 2 log(10n) f3(n) = 3n

f4(n) = 2n f5(n) = n2 f6(n) = 6 log n

f7(n) = n1/10000 f8(n) = log(n10) f9(n) = n2n

f10(n) = (log n)log n f11(n) = 10n f12(n) = nlog n

f13(n) = (log n)10000 f14(n) = 20n log n f15(n) = n + 8 log n

Problem 2 (15 Points).

(a) Suppose f(n) /∈ O(1). Show that f(n)2 /∈ O(f(n)). Conclude that there is no asymptotically
largest function.[Hint: Show the contrapositive, that if f(n)2 ∈ O(f(n)), then f(n) ∈ O(1)]

(b) Suppose f(n) /∈ O(1). Show that 2f(n) /∈ O(f(n)).

Problem 3 (5 Points). Show how to use an array to implement a queue with all operations being
(amortized) constant time.

Problem 4 (10 Points).

(a) Show how to implement a stack using two queues. Analyze the running time of the stack
operations.

(b) Show how to implement a queue using two stacks. Analyze the running time of the queue
operations.

Problem 5 (15 Points). We want hash functions to look like random functions, so why can’t we just
use a truly random function? Let X be a set with N elements, and Y a set with M elements.

(a) Show that the number of functions from X to Y is MN .
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(b) Suppose X is the set of n-bit sequences, and Y is the set of m-bit sequences. The random
hash function needs to be written down somewhere. Show that the hash function can be
represented using m2n bits.

(c) Show that this representation is tight: that any representation of all functions from X into Y
must have at least one function that requires m2n bits. Assuming the number of subatomic
particles in the visible universe is bounded by 10100, and each subatomic particle can represent
1 bit, and that we are interested in hashing strings into single bits (m = 1), what length of
sequences can we possibly hope to hash using truly random functions?

Problem 6 (15 Points). Suppose we want to create a hash table whose keys are student names
(represented as a sequence of lower-case letters), and whose values are their GPAs. Let the size of
the hash table be N . Explain why the following candidate functions are poor choices:

(a) Choose random integers A and B in {0, ..., N − 1}. Define h1(s) as follows: decompose the
string s into characters s1, ..., sn, and interpret these characters as integers, where a space is 0,
“a” = 1, “b” = 2, etc. Then h1(s) = A(s1 + ... + sn) + B mod N .

(b) Using the same interpretation of characters as integers, h2(s) = sn + 31sn−1 + 312sn−2 + ... +
31n−1s1 mod N .

(c) h3(s) = t mod N where t is the time, rounded to the nearest millisecond, when the function
h3 is called.

Problem 7 (10 Points). Prove the time bounds for a d-ary heap. That is, show that:

(a) deletemin operations take O
(

d log |V |
log d

)
.

(b) insert and decreasekey operations take O
(

log |V |
log d

)
.

Problem 8 (15 Points). Show how to implement the following features on a balanced BST with n
nodes:

(a) range(r, a, b) takes as input the root r of the tree and two values a and b with a ≤ b, and
returns the sorted, possibly empty list of values between a (inclusive) and b (exclusive). If k
values are output, your algorithm should run in time O(k + log n).

(b) numInRage(r, a, b) counts the number of values between a (inclusive) and b (exclusive). Your
algorithm should run in time O(log n), independent of the actual number of values in the
range. This will require storing additional data in the tree. Explain how to modify insertions,
deletions, and rotations to maintain the new data.

Total points: 100
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